
STUDENT INDUSTRIAL PROJECT

REPORT

Implementation of a Rust-Built Soft PLC on Real-Time

Linux with EtherCAT, Modbus/TCP, and

OPC UA Integration for IIoT Capability

JANUARY 2025 – AUGUST 2025

BBS AUTOMATION PENANG SDN BHD

VOLINTINE ANDER JILOH JR.

21001524

ELECTRICAL & ELECTRONICS ENGINEERING

i

ii

Abstract

This project addresses the feasibility of implementing a commercial-grade

Building Automation System (BAS) using a fully Free and Open Source Software

(FOSS) stack, in response to the growing demand for cost-effective, transparent,

vendor-agnostic, and interoperable automation solutions. The adoption of FOSS in

commercial-grade automation remains limited, with key challenges encompassing

reliability concerns, security, and standards compliance. The goal of the project is to

evaluate the feasibility of utilizing FOSS in commercial-grade automation by building

a functional prototype mock BAS. This was achieved by implementing a soft PLC

running on real-time Linux (PREEMPT_RT) acting as an EtherCAT MainDevice and

Modbus/TCP client for interfacing with remote I/O. The soft PLC is hosted on a

Raspberry Pi 5 2GB. The reliability of the deployed system was quantified by

measuring jitter, latency, uptime, system resource utilization, and CPU temperature.

Real-time performance of the soft PLC under continuous heavy stress load over 48

hours resulted in maximum jitter measurement of 210μs, with CPU temperature

hovering around 60°C. Typical maximum jitters measured vary from 22-210μs from

no stress load to maximum stress load. Testing of the Industrial Internet of Things

(IIoT) functionality of the integrated system was performed qualitatively, posing no

impact on real-time performance as maximum jitter recorded stayed <2% of the 10ms

cycle time as the maximum jitter recorded was 35μs, with 100% of the API responses

having returned status code 200 (OK) throughout testing.

iii

Acknowledgements

 I owe gratitude to my host company supervisor, Chuah Teong Khoey, for

giving me the inspiration to explore this topic, and for lending the Beckhoff EK1100

and BK1120 couplers, as well as the corresponding terminals and EnOcean master and

transceiver units. Without access to the necessary hardware, this project would have

been impossible. The support and affirmation I have received from him has also proven

indispensable in my effort to make the most out of the learning opportunity and my

time at BBS Automation Penang.

 I would like to thank the global open source community who are the oft-unsung

heroes behind the dependencies used in the project. Specifically, I would love to

express great gratitude to James Waples for ethercrab, an EtherCAT MainDevice

implementation in Rust; Philipp Schmechel of QiTech GmbH for the codebase I used

as a starting point; Jeff Anderson for GatorCAT, an EtherCAT MainDevice

implementation in Zig; Einar Omang of async-opcua, a fully async implementation of

OPC UA in Rust; Umberto Nocelli of frangoteam for FUXA, a FOSS HMI/SCADA

platform, and Mathias Kraus, Christian Eltzchig, and Jeff Ithier of ekxide IO GmbH

for iceoryx2, a zero-copy lock-free ultra-low latency inter-process communication

middleware. I would also like to thank Davy Demeyer of Acceleer for extending a

warm invite to the SASE Slack.

To the countless other amazing people who have directly and indirectly

contributed to open source code and documentation, I have learned so much thanks to

their efforts, and nothing can repay the debt that I owe but to give my own learnings

back to the community. Despite being in disparate timezones and each thousands of

miles away, they have never failed in giving me assistance, encouragement, and most

importantly a genuine sense of community.

iv

List of Abbreviations

ANSI American National Standards Institute

API Application Programmer Interface

ASIC Application-Specific Integrated Circuit

BAS Building Automation System

DCN Distributed Control Node

DIN Deutsches Institut für Normung

DMA Direct Memory Access

EEPROM Electrically Erasable Programmable Read-only Memory

ERP Enterprise Resource Planning

ESC EtherCAT SubDevice Controller

ESI EtherCAT SubDevice Information

ESM EtherCAT State Machine

ETG EtherCAT Technology Group

FOSS Free and Open Source Software

FPGA Field Programmable Gate Array

FSoE Functional Safety over EtherCAT (Failsafe over EtherCAT)

CoE CANOpen over EtherCAT

CRUD Create, Read, Update, Delete

GPOS General Purpose Operating System

GNU GNU’s Not Unix!

GUI Graphical User Interface

HMI Human-Machine Interface

HTTPS Hypertext Transfer Protocol Secure

IIoT Industrial Internet of Things

IDE Integrated Development Environment

IDF Integrated Digital Factory

IEC International Electrotechnical Commission

IP Internet Protocol

IPC Inter-Process Communication / Industrial PC

IR 4.0 Industrial Revolution 4.0

LAN Local Area Network

LLVM Low Level Virtual Machine

v

LLVM IR LLVM Intermediate Representation

MES Manufacturing Execution System

NIC Network Interface Controller

OOP Object-Oriented Programming

OPA Open Process Automation

OPC UA Open Platforms Communications Unified Architecture

PDO Process Data Object

PLC Programmable Logic Controller

RAII Resource Acquisition is Initialization

REST Representational State Transfer

RTOS Real-Time Operating System

SCADA Supervisory Control and Data Acquisition

SCP Secure Copy

SDO Service Data Object

SIL Safety Integrity Level

SSH Secure Shell

TCP Transmission Control Protocol

UB Undefined Behavior

UI User Interface

UL Underwriters’ Laboratory

WAN Wide Area Network

vi

Table of Contents

 Verification Statement i

 Abstract ii

 Acknowledgements iii

 List of Abbreviations iv-v

1.0 Introduction 1-2

1.1 Background 1

1.2 Problem Statement 1

1.3 Scope of Work 2

2.0 Objectives 3

3.0 Literature Review 4

3.1 Real-Time Computing 4-5

3.2 Soft, Virtual, and Hard PLCs 5-7

3.3 Real-Time Communications 7-8

3.4 Preemptive Real-Time Multitasking 9

3.5 Memory Safety 9-10

4.0 Methodology 11-32

4.1 Methods and Tools 11

4.1.1 Programming Languages 11

4.1.2 Graphics 11

4.2 Project Activities 13-31

4.2.1 Hardware Setup 12-14

4.2.2 Development Toolchain Setup 14-16

4.2.3 System Architecture – Hardware and Software Stack 17-18

4.2.4 Implementation Details 19-22

4.2.5 Test Methodology 23-31

4.3 Gantt Chart and Milestones 32

5.0 Results and Discussion 33-50

5.1 Results 33-40

5.1.1 cyclictest Latency Results 34

5.1.2 Worst-Case 48-Hour Soak Test 34

5.1.3 12-Hour Soak Test 34-35

5.1.4 Proxy Soak Test 35

vii

5.1.5 Light Load Tests 36

5.1.6 Floating above Idle Test 37

5.1.7 12-Hour Test: Floating above Idle 37

5.1.8 Testing of Heuristic: 12-Hour Light Soak Test 38

5.1.9 Jitter Distribution 38-39

5.1.10 Real-Time Performance Test Caveats 39

5.1.11 IIoT Integration Test 40

5.2 Discussion 41-50

5.2.1 Sub-Millisecond Real-Time Performance 42

5.2.2 Comparison with Equivalent Benchmarks 43

5.2.3 Functional Safety 44

5.2.4 The Pi vs. Other Host Hardware 45

5.2.5 Improving Operational Security 45

5.2.6 Extending Support for IEC 61131-3 46

5.2.7 Lock-Free Design 46

5.2.8 Relevance to Open Process Automation (OPA) 47

5.3 Sustainability 48-50

5.3.1 Environmental 48-49

5.3.2 Economic 49

5.3.3 Social 50

6.0 Conclusion 51

 References and Citations 52-56

 Appendix A: Links to Project GitHub Repositories 57

 Appendix B: Screenshots of Parts of the System 58-64

 Appendix C: Pictures of the Physical Test Bench 65-66

 Appendix D: Linux Kernel Build and Boot Configuration 67

 Appendix E: Equipment Bill of Materials 68

1

1.0 Introduction

1.1 Background

The Fourth Industrial Revolution (IR 4.0) has ushered in an era of

unprecedented connectivity and automation, driven by advancements in the Industrial

Internet of Things (IIoT). Traditional automation systems often rely on closed-source

proprietary software and hardware, which are often unmodular, costly, inflexible, and

have poor interoperability. However, with the rise of Free and Open Source Software

(FOSS), there now exists a compelling alternative. FOSS offers the potential for

reduced costs, increased customization, and greater transparency. This study aims to

explore the feasibility of using FOSS in commercial-grade automation by developing

a mock Building Automation System (BAS) using open-source tools and technologies.

1.2 Problem Statement

Despite the potential benefits of FOSS, its adoption in commercial-grade

automation remains limited. Key challenges include concerns about reliability,

security, integration with existing systems, and compliance with common standards.

This project seeks to address these challenges by evaluating the performance,

reliability, and security of a mock BAS built entirely with FOSS. The goal is to

determine whether FOSS can meet the stringent requirements of commercial-grade

automation and provide a viable alternative to proprietary solutions.

2

1.3 Scope of Work

This project seeks to establish the degree of feasibility of utilizing a fully open-

source stack in building and deploying a commercial-grade automation system. In this

report, a distinction is made between commercial-grade and hobbyist-grade (non-

commercial) systems. Commercial-grade automation adheres to industry norms,

expectations, and standards at a level reasonable enough for commercial customers;

whether that would be industrial process automation, or building automation.

Hobbyist-grade automation is distinctive in its use of ultra-low-cost hardware, lower

power electronics, voltages lower than 24Vdc. In contrast, this project considers a

setup consisting of hardware targeted at industrial applications to be ‘commercial-

grade’. The scope is delineated more explicitly as below:

i. This project does not control nor automate any physically-actuated systems,

as such systems typically require functional safety, which albeit possible

on the black channel, is currently unimplemented by the EtherCAT

MainDevice used.

ii. This project does not control nor automate any systems involved in the

preservation of life, such as but not limited to smoke alarms, gas leak

detectors, and fire sprinkler systems.

iii. All electronics with the exception of the input side of the AC-DC power

supply, run on 24Vdc or lower, with the maximum current in any part of

the system limited to 1A, 5A, or 10A by fuses.

iv. ‘Deployment’ of the system refers to execution of compiled program

binaries on a Raspberry Pi 5, and the execution of apps/services on the

development laptop to host the HMI/SCADA, and optionally, web services

running on remote servers for IIoT functionality.

3

2.0 Objectives

 This project aims to evaluate the feasibility of a fully open-source based

commercial-grade automation system by emulating a building automation system. The

project’s main objectives are summarized below:

i. To create a working prototype of a building automation system (BAS)

using a fully Free and Open Source (FOSS) stack to demonstrate feasibility

of using open source tools.

ii. To demonstrate HMI/SCADA functionality and IIoT integration (e.g.

alarms and events relayed by RESTful APIs for client mobile apps).

iii. To quantify deployment reliability via metrics such as determinism, jitter,

latency, uptime, resource utilization and CPU temperature.

iv. To evaluate the extent of possible future expansion into more critical

applications, such as (but not limited to) process automation involving

motion controls; functional safety; high throughput, low-latency data

acquisition, and deterministic plant-level orchestration.

4

3.0 Literature Review

Following latest guidelines from Item 1.5 of the EtherCAT Technologi Group

FAQ (2025) all instances henceforth of MainDevice and SubDevice respectively have

the same meaning as ‘Master’ and ‘Slave’ in pre-existing materials.

3.1 Real-Time Computing

 “Real-time” is used in many different colloquial senses, and is often conflated

with “live”. Real-time is defined by the amount of guarantee possible for meeting the

deadlines of specific tasks, backed by the degree to which system behavior is

deterministic (Rostedt, 2016). The phrase is further subdivided into three

classifications: hard, firm, and soft (Brown & Martin, 2010; VanderLeest, 2022; Intel

Corporation, 2022). Failure to accomplish a task within a specified deadline can mean

the loss of life or great financial loss.

A major example of hard real-time is in aerospace systems, where precious

cargo or data may be lost if certain critical tasks could not be accomplished within the

deadline allocated. Additionally, a major differentiator between hard real-time and

firm or soft real-time is the formal verification required in order to obtain mathematical

certainty, where system behavior is modelled mathematically hence formally verified.

Such formal verification allows for quantifiable metrics to be established (e.g., known

values for latency bounds etc.) (Feo-Arenis et al., 2016). Firm real-time sits between

hard and soft real-time, where there is a reasonable expectation of failure that does not

have a particularly catastrophic result. Missed deadlines in a firm real-time system

does not constitute total unrecoverable failure. On the other hand, soft real-time

systems can tolerate missed deadlines which although undesirable, pose no risk or

threat to safety (Utande, 2025).

 Real-time performance can be characterized by latency and jitter. The exact

definition of these quantities depend on context, but latency and jitter are generally

defined as follows. In the context of the Linux scheduler, latency can be defined as the

time elapsed after the invocation of a task until the beginning of the task execution.

(Huang & Yang, 2017). Hence a general definition of latency may be construed as the

amount of time elapsed between when an event is ordered to happen until the time that

5

the event actually starts to happen. The ‘event’ being measured varies by context,

hence, the exact quantity being measured also varies.

 Jitter may be defined as the deviation of the cycle time for a task. In the context

of a PLC cyclic task, it may be further divided into ‘periodic jitter’ and ‘release jitter’.

Following the definitions set in Definitions of Jitter and Latency (CODESYS Group,

2024), periodic jitter is simply how much the actual cycle time deviates from the

desired cycle time. Whereas release jitter is the difference between the largest and

smallest recorded latency that occurred within the measurement duration.

3.2 Soft, Virtual, and Hard PLCs

 The terms “soft PLC”, “virtual PLC”, and “hard PLC” are being increasingly

used in reference to paradigm shifts in how PLCs are implemented. Before the advent

of PLCs, system controls were implemented with electromechanical relay logic

(Wayand, 2020). The first PLC was invented in 1969 by Bedford Associates in

response to a proposals request from General Motors, to replace relay-based control

systems in the GM Hydramatic automatic transmission with electronic controls. The

idea itself was first envisaged by Dick Morley. (Dunn, 2009). Traditional ‘hard’ PLCs

are relatively architecturally simple microcontroller-based systems built to withstand

industrial environments. PLC programs in traditional PLCs sit closer to metal with a

simpler abstraction layer to interface with hardware.

Figure 3.2-1(a): Example

implementation architecture of

a virtual PLC. Adapted from Perez et al.

Figure 3.2-1(b): Beckhoff TwinCAT

Runtime Architecture. Adapted from

Beckhoff Automation (n.d.-e).

6

‘Soft’ PLCs on the other hand are characterized by a more complex architecture,

with more layers of abstractions away from bare metal and relies on an operating

system to interface with the hardware. Hence, the programmable logic itself is

implemented purely as software hosted by an operating system. Perez et al. (2022)

distinguishes soft PLCs and virtual PLCs respectively as a software that emulates a

standard PLC for the former, and a soft PLC running in a virtual machine for the latter.

“PC-based” controllers fall within the definition of soft PLCs, first pioneered by

Beckhoff in 1986 (Beckhoff Automation, 2021).

Notable vendors of PC-based controllers are Beckhoff, B&R, and Rexroth.

These vendors offer their own host hardware for their soft PLC runtimes. However,

one vendor, CODESYS, exclusively focuses on the soft PLC runtime software itself

and does not make any specific host hardware. CODESYS runtimes can run on any

host hardware that runs Windows, Linux, or VxWorks (CODESYS Group, n.d.-b).

 Since soft PLCs are essentially full computers, the low-level software and

firmware are specialized to guarantee real-time. Real-time is defined by known

bounded worst-case latencies which guarantee that control tasks can be executed

whenever necessary in order to meet deadlines. This can only be satisfied by some

means of system resource control to ensure timely execution of real-time control tasks.

The approach taken by TwinCAT on Windows NT is to have a separate kernel

extension that can safely override the behavior of the Windows NT kernel so that real-

time tasks always have access to system resources.

Despite itself being not real-time capable, the hybrid architecture of Windows

NT allows for this setup, thus enabling real-time (Beckhoff Automation, n.d.-a). The

now-discontinued Windows CE on the other hand, is a preemptible kernel, and is

readily soft real-time capable. Real-time applications on Windows CE utilize kernel

preemption in order to grant access to system resources for real-time tasks (Microsoft,

2006). This is a similar approach with Linux PREEMPT_RT. Being a monolithic

kernel, Linux strictly segregates user-space and kernel-space processes.

In order to support real-time, the kernel must be built with PREEMPT_RT and enabled.

This allows high-priority user-space processes to preempt the kernel itself,

guaranteeing access to system resources for real-time tasks (McKenney, 2005; Brown

& Martin, 2010; Madden, 2019; Understanding Linux Real-Time, 2025).

7

 ‘Virtual’ PLCs take the abstraction in a radical direction by completely

liberating the control logic from a dedicated host hardware that is traditionally installed

at specific parts of the production line. Instead, the PLC itself is merely software

running in a container or a virtual machine, whose host hardware may be significantly

further from the physical processes it controls. Although radical, there are pioneering

examples of the architecture being deployed in production. For example, in a recent

project by Audi, the TÜV-certified SIMATIC S7-1500V virtual PLC was used to

control the axle assembly line for the Audi e-tron GT in Audi’s Böllinger Höfe factory

in Neckarsulm (Siemens, n.d.).

3.3 Real-Time Communications

 Real-time communications is achieved via EtherCAT, a summation-frame

fieldbus protocol based on Ethernet specially designed for low latency and jitter, which

are required in precise, time-sensitive applications (Wu & Xie, 2019). Originally

developed by Beckhoff, the protocol has been standardized by the International

Electrotechnical Commission (IEC) as IEC 61158. The specification is now

maintained by the ETG as an open technology (EtherCAT Technology Group FAQ,

2025).

Figure 3.3-1: Visualization of on-the-fly processing. Adapted from Broling (2007).

Time determinism is achieved by utilizing FPGA/ASICs for on-the-fly processing of

telegrams. As a telegram passes through a SubDevice, the ESC inserts input data into

SubDevice 1 has input data to give and

an empty output data buffer

SubDevice 1 retrieves output data and

places its input data into the frame

Repeat for SubDevice 2 and subsequent SubDevices.

8

the telegram, and retrieves (if any) output data from the telegram. The on-the-fly

processing allows the entire network to be addressed with just a single frame. An

EtherCAT SubDevice is governed by the EtherCAT State Machine. This state machine

is composed of the states Init (INIT), Pre-Operational (PRE-OP), Safe-Operational

(SAFE-OP), Operational (OP), and Boot (BOOT) (Beckhoff Automation, n.d.-f).

Figure 3.3-2: EtherCAT State Machine. Adapted from Beckhoff Automation (n.d.-f).

As the protocol relies on frame summation, the real-time performance of any

specific network is characterized by the slowest SubDevice. Each SubDevice incurs

additional processing delays, and this necessitates the use of FPGA/ASICs to

implement the ESC for hard real-time guarantees and minimum latencies. Data is

transmitted in two forms in EtherCAT: as PDOs (Process Data Objects) or SDOs

(Service Data Objects). PDOs are used to transmit cyclic process data during the OP

state, whereas SDOs are often used to parameterize a SubDevice during acyclic

communication (during PRE-OP). The most common way SubDevices are

parameterized is via CoE (CANOpen over EtherCAT) SDOs, among other protocols.

The address space of an EtherCAT network is 16 bits. EtherCAT also supports

redundant cabling (ring topology) and cable breakage detection, though these features

are optional and are defined in the specifications as feature packs (FP). In any

EtherCAT network, there exists only one MainDevice, which handles SubDevice

management, distributed clocking, and inter-SubDevice communication (which

enables FSoE) among other functions. The bulk of the processing occurs within each

SubDevice themselves, thus the MainDevice itself can be simply implemented in

software so long as an Ethernet NIC exists (“Industrial Communication Networks -

Fieldbus Specifications - Part 1”, 2023).

9

3.4 Preemptive Real-Time Multitasking

By default, the Linux kernel employs preemptive multitasking, where tasks are

preemptible. Preemption is the interruption of the execution of a task by a scheduler,

based on the scheduling policy. This allows system resources to be distributed

according to the priority of tasks and whether or not they are CPU-bound (mainly

requires CPU resources) or I/O-bound (blocks on waiting for I/O) (Baeldung, 2023).

PREEMPT_RT enables the application of preemptive multitasking in a real-time

setting. However, the implementation is far from trivial.

 When a low-priority task holds a lock on a resource that is needed by a high-

priority task, a problem known as priority inversion may occur. When a medium-

priority task preempts the low-priority task and holds the lock on the resource needed

by the high-priority task, the high-priority task is starved and is effectively being

preempted by lower-priority tasks, despite having the higher priority. This is solved in

the Linux kernel using priority inheritance. The low-priority task is temporarily

boosted to the same level as the high-priority task (thus inheriting the priority of the

high-priority task) so that when it yields, the original high-priority task is able to

immediately acquire the lock to the shared resource (RT-mutex Subsystem, n.d.).

3.5 Memory Safety

Figure 3.5-1: Illustration of the Heartbleed bug (CVE-2014-0160) caused by lack of

input sanitization and bounds-checking. By Patrick87 (2014).

Many popular memory-safe languages achieve memory safety by using garbage

collection (Heller, 2023). However, the presence of a garbage collector is undesirable

10

in many circumstances, such as real-time applications. Garbage collection is inherently

indeterministic, and the programmer has limited control over its behavior.

Programming languages that offer manual memory management exposes complete

control over memory to the programmer. This is needed in applications that require

deterministic guarantees, such as PLCs, communications, and embedded devices

(Henriksson, 1998).

Traditionally, programming languages with manual memory management are

often vulnerable to undefined behavior (UB). UB is simply program constructs that

are left undefined by the programming language specification. Examples of UB (at

least in C) are division by zero, oversized shifts, integer overflows, null pointer

dereference, and reading uninitialized values (Wang et al., 2012). ISO/IEC 9899:2024

defines UB in C as “behavior, upon use of a nonportable or erroneous program

construct or of erroneous data, for which this International Standard imposes no

requirements”. Thus, UB in a program can result in the program doing absolutely

anything, with no regards to whether this is expected or not by the programmer.

UB can manifest as a security vulnerability, such as in Heartbleed (CVE-2014-

0160) as illustrated in Figure 3.5-1. In Heartbleed, the server program does not sanitize

inputs from the client, and accesses data in memory beyond the correct bounds. Such

data accesses allow malicious actors to arbitrarily read data stored in the server, which

may be sensitive and confidential (Durumeric et al., 2014). Memory safety violations

affect real-world products used daily. Microsoft and The Chromium Projects each have

reported that memory safety related bugs constitute 70% of discovered security

vulnerabilities in their respective products (Microsoft, 2019; The Chromium Projects,

n.d.).

Rust is a notable exception, as it is currently the only mainstream programming

language that is both memory safe while lacking a garbage collector. Rust code is ‘safe’

by default (UB is made impossible due to static checks by the compiler), but is still

possible in regions marked with the unsafe keyword. However, Rust lacks an official

specification such as ISO/IEC9899 for C. Hence, the claim that UB is completely

eliminated in safe Rust is not airtight. Despite that, the static checks enforced by the

compiler by default eliminates entire classes of memory bugs that are commonly and

trivially introduced when writing in C (Ballo, Ballo, & James, 2022).

11
1See Milewski (2015) for a discussion on category theory and algebraic data types.

4.0 Methodology

Throughout the development of the project, the methodology most strongly

adheres to the iterative and modular method, where the system is first broken up into

simpler, smaller pieces that are eventually integrated. The process of iteration involves

codebase refactoring, removal of redundancies, and eventually where necessary,

growing in the quantity, interdependency, and complexity of features.

4.1 Methods and Tools

4.1.1 Programming Languages

 The main programming language used is Rust, a high-performance, memory-

safe programming language that enforces rigorous compile-time guarantees via a static

type system and borrow checking, without the runtime overhead of a garbage collector.

OOP in Rust is achieved via composition as opposed to inheritance with algebraic data

types (specifically ‘algebraic’ to the extent that the type system forms a semiring up to

isomorphism and inhabitation1).

 JavaScript is used for additional UI functionality within the FUXA HMI

platform. Python is used for performance benchmarking analysis, as well as a gateway

for IIoT functionality. Zig and C are used to implement a Telegram bot server. Bash

scripting is used in the development and deployment environment assisting in

deploying and running the compiled binaries. Dart is used to create the mobile client

app, utilizing the Flutter UI framework. Among the programming languages used, C,

Rust, and Zig, are not garbage-collected.

4.1.2 Graphics

 Inkscape, an open source vector graphics editor was used to design the concept

UI of the mobile IIoT client, in addition to graphical assets used for the project

documentation. Draw.io was used to create the topology, architecture, and the

EnOcean state machine diagram.

12

4.2 Project Activities

This section describes the activities undertaken to realize the project objectives.

4.2.1 Hardware Setup

4.2.1(a) Electrical Connections

Wiring was done closely referencing datasheets provided by manufacturers.

Additionally, all metal components were grounded to earth with oversized gauge wires.

To avoid ground loops, there is only a single path to earth. For connection with the I/O

components, ferrules were used. The IRIV IOC is not grounded as it does not have a

dedicated earthing terminal. Additionally, at the time of writing, Cytron claims in its

datasheet that the IRIV IOC does not require a connection to protective earth.

Per Beckhoff recommendations, the EK1100 and BK1120 couplers each are

wired with 10A and 1A fuses. The 10A fuses protect the E-bus and K-bus terminal

power contacts, and the 1A fuses protect the power supply for the EK1100 and

BK1120 couplers themselves. The Raspberry Pi 5 was powered separately by a

dedicated, 5A-fused AC-DC 5V UK power supply via USB-C. The Phoenix Contact

FL SFNB 5TX network switch connects to earth via its metal DIN rail clip. While no

effort is spent on creating a fully standards-compliant test bench, UL 508A

recommends that all metal parts are earthed, and this is heeded wherever possible. The

AC-DC power supply is fed via clip-on terminal blocks, and the hot (live) wire is

connected through a breaker. This is especially important so that the system is truly

de-energized and does not float live while “off”.

An alternative consumer-grade network switch, the TP-LINK LS1005 was also

used, as the industrial-grade Phoenix Contact switch was on ephemeral loan. The

LS1005 runs on 5V DC from the supplied, 5A-fused AC wall plug. Since the LS1005

is not earthed, the RJ45 cables float at 0Vdc (relative to 0Vdc of the power supply) for

the IRIV IOC, and approximately –0.02V relative to earth for the RJ45 segment

between the LS1005 and the UGREEN CR111 USB-A NIC. There should be no risk

of ground loops in this configuration as this segment of the network is floating and is

not earthed. The IRIV IOC is powered directly from the 24Vdc rail through a 10A fuse,

with built-in surge and overcurrent protection.

13

4.2.1(b) Network Topology

Figure 4.2.1(b)-1: Test bench network topology.

In Figure 4.2.1(b)-1, I/O terminal connections may arbitrarily be changed, but their

coupler-relative positions are fixed. The EK1100 must be the first SubDevice in the

EtherCAT network. The blue line only serves to clarify the path of Modbus/TCP

packets though it piggybacks on the same Mixed IP network.

All wired communication is done via twisted pair Ethernet, with both ends

terminated with RJ45. For programming of the IRIV IOC, the manufacturer-provided

CircuitPython firmware is flashed via its USB-C port. Different NICs are used to

transport different protocols and data. EtherCAT data is transported in its own

dedicated network, whereas SCADA, Modbus, SSH, and other non-real-time data are

transported via a separate USB-A NIC.

14

4.2.1(c) Networking Tools

 Configuration and setup of the network involved extensive use of command

line networking tools to verify and troubleshoot connections. Namely, the tools arp-

scan, nmcli, ping in particular were absolutely critical.

4.2.1(d) Deployment Interfacing

The Raspberry Pi 5 is used in a headless (without dedicated display, mouse,

and keyboard) configuration, and was likewise set up in the same manner. The

Raspberry Pi OS image was flashed onto a 32GB microSD card using the Raspberry

Pi Imager tool on the development laptop. Interfacing with the Pi is done via SSH, and

files are transferred via SCP, both SSH and SCP have been set up to use certificate-

based authentication, with password login disabled. The GUI service is disabled using

raspi-config to dedicate maximum resources to the soft PLC runtime. Cross-compiled

binaries are transferred to the Pi over SCP.

4.2.2 Development Toolchain Setup

4.2.2(a) Operating Systems

 The only operating systems used for development are Pop!_OS 22.04 LTS and

Raspberry Pi OS (Debian 12 Bookworm). The former is installed on the development

laptop, while the latter on the Raspberry Pi 5 for deployment purposes. Both operating

systems are Debian-based, with Pop!_OS in particular being based on Ubuntu.

 The packaged kernel on the official Raspberry Pi OS image was not real-time

capable, despite being version 6.12. Hence, the Linux kernel version 6.12 on the

Raspberry Pi OS was recompiled with the PREEMPT_RT patch, to enable preemptive

real-time multitasking, a critical requirement for soft PLCs. Additionally, in the spirit

of open source, Windows is used only to prepare this report to comply with the

academic convention of using Microsoft Word.

15

4.2.2(b) Integrated Development Environment (IDE)

 Visual Studio Code (VSCode) was initially used early on in the project, but

due to language server incompatibility and performance overhead, VSCodium is used

instead. VSCodium is a community-distributed version of VSCode that is compiled

solely from the open-source codebase, without additional closed-source add-ons from

Microsoft. Cargo is also installed to handle dependencies, linkers, targets, and to

conveniently interact with the Rust compiler.

The language server implementation for Rust, rust-analyzer, is installed as an

extension, providing syntax highlighting, type checking, and documentation popups.

Python is used with venv to provide reproducible virtual environments, eliminating

issues with dependency management and multiple Python installation directories. venv

is integrated with the VSCodium IDE, though venv itself is a runtime environment

independent of any IDE. As for development of the mobile client app, the Dart and

Flutter extensions were installed for ease of building and flashing the .apk to an

Android smartphone, debugging, packaging, managing dependencies, syntax

highlighting and refactoring.

Support for Zig in VSCodium was enabled by installing the Zig language

extension, which also comes with the ZLS, the language server implementation for

Zig. As is the case with rust-analyzer, ZLS provides syntax highlighting, type

checking, and popups. However, unlike rust-analyzer, ZLS does not show all compiler

errors. On save, rust-analyzer highlights all compiler errors.

4.2.2(c) Source Control

 Source control is achieved using Git, the most ubiquitous, open-source,

industry-leading distributed source control system. All source files for the core runtime

are stored in a monorepo architecture, using GitHub to host the remote repository. Core

Git features such as branches, merges, reflog, rebase, were all used at least once

throughout development to assist with structured tracking of the source code. The

source code for minor additional non-real-time applications (mobile app client, PLC

OPC UA-Supabase gateway) are stored in separate repositories.

16

4.2.2(d) Cross-Compilation

 The ARM toolchain is used to cross-compile for the Raspberry Pi 5’s ARMv7

BCM2712 SoC. Initially during development, cross compilation was done directly on

the host environment, i.e. without a container. However, with the goal of ensuring no

undefined behavior and to increase performance, inter-process communication

between the PLC and HMI/SCADA was reimplemented using iceoryx2, whose clang

build scripts could not resolve the required ARM GNU C libraries.

Hence, the most convenient and reliable way to perform cross compilation was

to use cross, a wrapper for Cargo with Docker as the backend. The containerized

approach streamlines dependency management by separating the host environment

and emulating the target more closely, thereby eliminating “it works on my PC”-type

problems. In implementing the Telegram bot in Zig, however, CMake was

unfortunately unavoidable due to a critical dependency, iceoryx2, not having official

Zig bindings. Hence, its C bindings were used instead.

As the Telegram bot consumes PLC data via inter-process communication

(using iceoryx2), the C bindings for iceoryx2 still need to be cross-compiled using

CMake, while the resulting Zig application was cross-compiled with Zig itself. Due to

the glibc shared library dependency, the ARM compiler toolchain was version-

matched with the installed glibc version on the Raspberry Pi.

17

4.2.3 System Architecture – Hardware and Software Stack

Figure 4.2.3-1: System software and hardware architecture. Parts marked with

Ferris the Crab are written in Rust.

Architectural design decisions are motivated by ease of interpretability and

experimentation. Major components of the software stack are not production-ready,

though they may have been used in production. Maintainability and documentation

quality is prioritized over performance in non-critical components. The control loop is

implemented in Rust as it is the most critical part of the code requiring performance

and deterministic behavior, whereas the non-critical IIoT gateway that links between

the remote database and the OPC UA server is a simple Python script. Additional HMI

18

functionality is achieved using scripts written in JavaScript, while the mobile app

client is fully written in Dart using the Flutter framework.

 Not all architectural design decisions are motivated solely by technicalities;

ethercrab was chosen as the EtherCAT MainDevice because of a small, tightly-knit

group of about four dozen users that regularly and casually interact with the developer.

The soft ‘PLC’ is hence built around the MainDevice, in Rust. The memory safety and

fearless concurrency advantages that come with using Rust were an unintended bonus.

In addition to its active status, it is also a performant user-space application,

simplifying deployment and troubleshooting.

 However, this specific decision does not shun other MainDevice

implementations. GatorCAT, a Zig implementation of the EtherCAT MainDevice was

heavily used as a close reference in understanding the EtherCAT standard itself,

despite not being an inseparable dependency of the soft ‘PLC’. GatorCAT’s command

line tool and use of Zenoh to publish/subscribe process data as topics makes it highly

modular and architecturally elegant, with minimal overhead. Despite that, Zig is an

unproven language still under development, and is far from version 1.0; though the

language does have an active and wholesomely helpful community of users. Zig was

used to implement the Telegram bot, using the C FFI bindings for iceoryx2 to subscribe

to data published by the PLC.

 A standard feature of most modern PLCs is online variable read/writes. This is

relatively straightforward to implement, as any standard debugger can be used to

change variable values of a running process. However, ensuring that such changes are

done safely is far from a trivial task. In addition to manipulation of variables at runtime,

PLCs require online code changes (also known as hot swapping or hot reloading). That

is, recompilation of parts of the control logic and swapping the new binary while the

PLC program is running. This feature is difficult at face value, and even harder to

implement safely and correctly.

 Such features were not implemented due to the sheer complexity. A feature-

complete runtime will require additional upstream dependencies. Additionally, there

are many ways UB can manifest in such a system, which can have negative real-world

consequences. such work is left for future exploration and are hence not within the

scope of this project.

19

4.2.4 Implementation Details

4.2.4(a) Concurrency and Multithreading

tokio and smol are used for asynchronous programming. The EtherCAT

MainDevice, ethercrab, performs best using a lightweight smol runtime, whereas tokio

is used in the OPC UA server and the Modbus/TCP processes. Transport of real-time

EtherCAT process data out of the sensitive hot path and into the OPC UA server

leveraged inter-process communications, implemented with iceoryx2. The OPC UA

server is a blocking await, so the IPC polling task is a separate thread.

Thread-safe access of shared data is implemented using RwLocks and Mutexes.

These locks utilize RAII in order to release locks to shared data; however, they do not

provide any runtime or static warnings for deadlocks, but a deadlock is immediately

noticeable as the EtherCAT couplers will immediately go into PRE-OP due to timeout.

4.2.4(b) Pre-Faulting

Page fault counts increases within the first few seconds of program startup and

remains constant afterwards. During program initialization at PRE-OP, the process

image buffer of the EtherCAT network is configured. This buffer is allocated on the

heap using Vec<T, A>, which is dynamically-expanding. This effectively (validly)

faults the allocated pages needed. Since no additional shrinking/expansion of heap-

allocated data structures occur past PRE-OP, the program has access to all of the heap

memory it needs; hence page fault counts remain constant. For real-time applications,

the added overhead from page faults can negatively affect real-time performance.

Hence, allocated memory must be pre-faulted before critical sections.

One caveat of this is minor page faults due to IPC. Since the PLC process is

also a subscriber to inter-process data, when publisher processes get initialized, a small

number (usually 3) of minor page faults are generated by the PLC process. This is

negligible and will not adversely effect real-time performance, as long as publisher

processes to the PLC process do not get frequently spawned and killed. The following

command can be used to monitor the minor and major page fault counts for a specific

process:

$ ps -o min_flt,maj_flt [PID]

20

4.2.4(c) EnOcean Driver

Figure 4.2.4(c)-1: KL6583 EnOcean State Machine.

Constructed based on Documentation | EN KL6581 and KL6583 (2023) and

EnOcean Equipment Profiles (2017).

The KL6583 and KL6581 form the transceiver unit that receives input data from the

PTM200 switch. EnOcean is a batteryless, wireless protocol. The EnOcean driver was

written as part of the PLC application, based on the datasheet of the Beckhoff

KL6581/6583 (Documentation | EN KL6581 and KL6583, 2023) and the EnOcean

Equipment Profiles document, version 2.6.7 published by the EnOcean Alliance

(EnOcean Equipment Profiles, 2017).

The implementation is a simple state machine, though some trial and error was

necessary as the KL6581/6583 datasheet contained confusing language and severe

typos. In addition, example TwinCAT programs provided by Beckhoff depend on

closed-source libraries, providing little insight to implementation.

21

4.2.4(d) IIoT Backend

 Supabase is an open-source development platform for storage backends. Every

project is a Postgres database, and the API is implemented using PostgREST. It can be

self-hosted, hosted on a third-party cloud provider, or first-party hosted. For this

project, the first-party hosted solution is used with the Free tier. The Free tier offers

unlimited API requests, 50,000 monthly active users, a 500MB database size, 5GB

bandwidth and 1GB file storage. For the purposes of this project, the Free tier is already

more than enough. However, after seven days of inactivity, the Supabase project is

automatically paused, and the number of active projects on Free tier is limited to two.

 The Postgres tables used for the project are protected using Row Level Security

(RLS) to prevent unauthorized read/writes. The source of truth at the plant level is the

OPC UA server hosted on the PLC hardware (Raspberry Pi 5 for this project). The

PLC is responsible for transforming fieldbus data into OPC UA tags, which are then

used by HMI and SCADA. The Supabase database itself acts as a tag historian.

 For urgent alerts, the PLC also hosts a Telegram bot. Predefined alert messages

in the PLC program are communicated via IPC with the Telegram bot, bypassing the

OPC UA server. It is assumed that IPC is more reliable than an OPC UA client

connection, hence, critical alerts are triggered in this manner.

4.2.4(e) IIoT Frontend

 The UI/UX layout of the mobile client app was initially designed in Inkscape.

UI elements such as buttons and icons come from the Material design suite, with the

exception of the typeface, Work Sans, which was sourced from Google Fonts.

fl_charts was used to render line graphs and icons_launcher was used to handle app

icon generation and configuration.

 The mobile client app implements three features: Tag View, Chart View, and

Admiral. Tag View simply shows a scrollable sample of the latest records in the

database. Chart View simply plots the latest analog input data stored in the database.

Admiral is a feature that allows the user to send predefined commands to the PLC

remotely, however such commands are only executed if the remote command interlock

is satisfied. In addition to the mobile client app, any Telegram client app acts as the

frontend for the Telegram bot hosted on the PLC.

22

4.2.4(f) Debugging Methodology

 A major bug relating to the EtherCAT MainDevice used was initially

sidestepped. The bug involved an out of bounds array access to an array structure

storing SyncManager types for a particular SubDevice; the BK1120 K-bus coupler.

Due to the out of bounds access, the runtime panic prevented the ESM of the BK1120

to transition from PRE-OP to SAFE-OP. The bug was sidestepped by forcing an index

check and breaking a specific loop early. The coupler was connected to a Windows

laptop running TwinCAT 3 and the startup CoE parameters were inspected.

Other users of a separate MainDevice, the IgH EtherCAT Master reported

previously ESM state transition failures due to a firmware bug on certain units.

Ultimately, it was finally discovered that the MainDevice read two additional Sync

Managers that were completely undocumented. This was cross-referenced with the

BK1120 datasheet itself as well as the TwinCAT ESI file. The datasheet also did not

document specific CoE parameters necessary for transition into SAFE-OP and OP.

The bug was fixed by removing discovered Sync Managers that did not correspond to

SyncManager types specified in the EtherCAT standard.

23

4.2.5 Test Methodology

4.2.5(a) Real-Time Performance Testing

All CPU cores are pinned to ‘performance’ to disable frequency scheduling.

The command-line tools used for testing are cyclictest and stress-ng. The latter is used

to add stress to the system while the soft PLC is running. cyclictest is used to gauge

the baseline real-time performance of the system by measuring thread latencies. This

is particularly useful to quickly verify system real-time performance optimizations. In

addition, stress-ng may be used with taskset in order to specifically stress a specific

CPU core. During test runs, htop is also used to monitor system resource utilization.

The following cyclictest command was used to specify exact test run parameters:

$ sudo cyclictest -D 10m -i 200u --default-system -a 0-3 -t 8 --

mainaffinity 2-3 -p 95 --policy fifo --mlockall --priospread

Since CPU cores 2 and 3 were isolated for executing real-time tasks, stress-ng was run

on the isolated CPU cores using taskset:

$ taskset -c 2 stress-ng --cpu 8 --cpu-method fft

$ taskset -c 3 stress-ng --cpu 8 --cpu-method fft

stress-ng was also used to stress virtual memory and disk I/O as below:

$ stress-ng --vm 8 --vm-bytes 900M --timeout 20m --iomix 8

4.2.5(b) Jitter Distribution Analysis

Real-time performance relies on the maximum jitter recorded. However, it is

still useful to analyze the distribution of recorded jitter values. These test runs are short,

ranging from 5-20 minutes, hence they cannot be used to gauge the long-term real-

time performance of the PLC. The PLC measures the jitter between each cycle,

appends it to a Vec<T, A> type that is then written out to a .csv after a specified amount

of time. The .csv is then copied over into the development laptop where it is analyzed

with Python to compute the mean, standard deviation, as well as a histogram plot.

24

4.2.5(c) Integration Testing Methodology

 In order to test the fully integrated system as a whole, the mock BAS

application is created to demonstrate the maximum extent of functionality for each part

of the system, as well as their interactions. This was conducted with the Pi 5 connected

to the internet over WiFi. The PLC logic is programmed to conditionally trigger events

involving full-duplex transmission and processing of data between all nodes. The

nodes in the integrated system are as follows:

Node Function Actual Host/Platform

PLC Run EtherCAT MainDevice,

Modbus/TCP client, and control logic

Raspberry Pi 5B

HMI Host FUXA UI to visualize and

read/write I/O data

Acer Aspire A315-57G

Remote

Database

Store fieldbus I/O history and

commands from Mobile Client

Supabase on AWS

t4g.nano in Singapore

Mobile Client Mobile HMI, send remote commands Samsung SM-A528B/DS

Table 4.2.5(c)-1: Nodes in Integrated System.

Figure 4.2.5(c)-1: Visualization of Nodes in the Integrated System.

25

In Figure 4.2.5(c)-1, “LAN” refers to the local TCP/IP network, which

excludes the EtherCAT fieldbus, but not Modbus/TCP. However, data from

Modbus/TCP is not directly accessed by nodes other than the PLC. The source of truth

at the floor level is the OPC UA server, which the PLC hosts.

The integration test is fully qualitative. As the overall integrated system is not

fully real-time (with the exception of the PLC logic and the EtherCAT fieldbus),

temporal measurements were not measured as the WAN and LAN are inherently non-

deterministic (all data transmitted over TCP, internet connection provided through

WiFi, etc.), hence are unbounded. Latency between nodes in the integrated system also

depends on the specific internet connection, service provider, time of day, etc.

Therefore, no useful interpretation of temporal measurements can be made with

respect to the integrated system.

4.2.5(d) Mock BAS Control Narrative

The mock BAS controls a fictional building composed of three arbitrary areas,

presumably within 100m of each other. One can imagine them to be bedrooms,

meeting rooms, garages, or a yard. Nevertheless, the effect of inputs on outputs are not

limited based on the ‘area’ where the input device is located. The three arbitrary areas

are served by three separate I/O devices: The E-bus terminals (EK1100 coupler cards);

the K-bus terminals (BK1120 coupler cards), and the IRIV IO Controller. All fieldbus

communication occurs over twisted pair Ethernet.

Input

Device

Type Channels Area

Served

Active

Level

Protocol

KL1889 Digital Channel 6 1 LOW EtherCAT

KL6581

+KL6583

Digital (or Analog,

data scheme is

arbitrary)

Rocker A

Rocker B

All -

EL1889 Digital Channel 1-2 2 LOW

EL3024 Analog, 4-20mA Channel 1 2 -

IRIV IO Digital+Analog (0-

10V or 4-20mA)

AN0

DI0

3 HIGH Modbus

/TCP

Table 4.2.5(d)-1: Mock BAS fieldbus inputs.

26

The KL6581+KL6583 combo constitutes the EnOcean transceiver unit that receives

digital data wirelessly from the batteryless PTM200 transmitter. Since the transceiver

receives EnOcean datagrams and exposes the raw datagram in its process image, the

form of the data (whether it is digital/analog) depends on the transmitter. In this case,

the PTM200 is a simple digital switch.

Output

Device

Type Channels Area

Served

Active Level Protocol

EL2889 Digital Channels 1-16 1 LOW EtherCAT

KL2889 Digital Channels 1-16 2

Table 4.2.5(d)-2: Mock BAS fieldbus outputs.

Transducer Type Type

PTM200 EnOcean Pushbutton

Transmitter Module

Input

Limit Switch Switch

Selector Switch Switch

E-stop Switch E-stop

Rotronic Hygroflex HF135-

SB1XDXXX

Humidity and Temperature

Sensor

Q-Light ST45B-3-24-RAG Tower Lights Output

Table 4.2.5(d)-3: Mock BAS transducers.

Alarms and logs reside on the HMI/SCADA running on a separate computer. The PLC

can also send notifications via a Telegram bot. There are two HMIs. The local HMI

reads and writes tag values to/from the PLC via OPC UA over the LAN. The remote

HMI is a mobile app reads and writes tag values to/from the PLC via a remote database.

The remote HMI writes tag values using its ‘Admiral’ feature.

27

The following flow charts describe the PLC logic.

Figure 4.2.5(d)-1: EnOcean Routine in PLC program.

The control logic starts with the EnOcean routine, which handles inputs from the

PTM200 and controls digital outputs and program flow via the blinkerlamps variable,

which if TRUE, will blink all channels of the KL2889.

28

Figure 4.2.5(d)-2: HMI Commands Handler routine in PLC program.

The HMI may also control the same outputs controlled by the PTM200, however,

priority is given to the PTM200 as its input may override that of the HMI.

29

Figure 4.2.5(d)-3: Blinkerlamps routine in PLC program.

This routine only executes if the blinkerlamps variable is set, which occurs in the

EnOcean routine and HMI Commands Handler routine as described in Figure 4.2.5(d)-

1 and Figure 4.2.5(d)-2 respectively.

30

Figure 4.2.5(d)-4: Telegram Notification Update routine in PLC program.

The purpose of this routine is to demonstrate the Telegram bot. A direct message link

to an appointed person in charge may be used to notify emergencies where urgent

intervention is necessary.

31

Figure 4.2.5(d)-5: Remote Commands

Handler routine in PLC program.

Figure 4.2.5(d)-6: Temperature Range

Indicator routine in PLC program.

The Remote Commands Handler routine will only execute if Channel 1 of the EL1889

is toggled ON, functioning as an interlock. However in this case, since there is only a

single action step conditioned on the ‘interlock’, it is effectively a simple permissive.

32

4.3 Gantt Chart and Milestones

Figure 4.3-1: Project Gantt Chart and Milestones.

Milestones

Milestone Completed in SIP Week

Design system architecture 4

Low-level programming 7

Frontend programming 11

Integration test 12

Table 4.3-1: Project Milestones and Week of Completion.

33

5.0 Results and Discussion

Testing of the system focused predominantly on real-time performance, being

that the core functionality implemented is an EtherCAT-based control loop. Despite

targeting a building automation system as a mock application example, at the very

minimum, the system should have reasonable soft real-time capability, backed up by

empirical testing.

Integration testing for IIoT functionality was conducted without expectation of

real-time behavior of the IIoT components, since there are no critical deadlines and

arbitrary retries are allowed (a natural consequence of the TCP/IP stack). Much of the

IIoT infrastructure was outsourced to cloud backend providers. Thus, testing involved

simple verification of CRUD operations via the Supabase API. First using a REST

testing tool to directly test the PostgREST API, as well as end user testing of the mobile

app client.

5.1 Results

The following tests were conducted without a GUI running, swap disabled, and

wireless interfaces (Bluetooth and WiFi) soft blocked with rfkill. The Raspberry Pi 5

used was the basic B variant with 2GB of RAM. The Pi was not connected to the

internet during real-time-performance-related testing. Also note that several non-real-

time but critical processes are still run; namely, the OPC UA server and the

Modbus/TCP polling process. The tx-usecs and rx-usecs parameters for the

EtherCAT NIC were both set to 0 using ethtool to disable packet coalescing. In this

analysis, ‘jitter’ refers to cycle activation jitter of the PLC, which is defined as the

following:

where is the current cycle, is the scheduled next cycle start time that was

calculated in the immediate previous cycle, and is the time instance calculated in

the current cycle. The control loop thread is instructed to sleep until wakeup for the

next cycle. Hence in using the definition above, jitter is always non-negative.

5.1(1)

34

5.1.1 cyclictest Latency Results

To establish baseline latency of the Pi 5, cyclictest was used, with additional

stress loads run concurrently with stress-ng. This is conducted to survey the

performance of the host hardware itself, generic with respect to the actual real-time

application to be run.

Run Maximum per-

thread latency (μs)

Maximum per-thread

latency average across all

8 threads (μs)

Average of average per-

thread latency (μs)

1 148 101.75 15.75

2 119 104.00 11.88

3 128 107.88 12.38

Table 5.1.1-1: Baseline Pi 5 latency results with stress load run concurrently.

5.1.2 Worst-Case 48-Hour Soak Test

Test results Release

(1ms cycle)

Maximum jitter (μs) 210

Maximum sleep interval (μs) 121

Table 5.1.2-1: Maximum jitter and maximum sleep interval in μs over 48 hours.

A torture soak test was conducted over a span of 48 hours nonstop, with constant RAM

utilization between 50-60%, and non-isolated CPU cores (CPU0-1) constantly utilized

at 100%. The CPU temperature was verified to be below 60°C, far below the 85°C

throttling threshold. stress-ng was used for the simulated CPU and RAM load, and was

tweaked so that RAM utilization does not contend excessively and that the control

loop remains operable.

5.1.3 12-Hour Soak Test

Maximum jitter (μs) 206

Maximum sleep interval (μs) 220

Table 5.1.3-1: Maximum jitter and maximum sleep interval in μs over 12 hours.

(Release mode, 1ms cycle)

35

The 12-hour soak test recorded a similarly intolerable maximum jitter of 206μs. While

this is intolerable for <10ms cycles (jitter must be <200μs), it is sufficient for slower

cycles (>20ms) and is helpful in delineating where the real-time capability of the Pi 5

starts to fail. Similarly, the RAM utilization remained below the upper bound of 80%,

staying between 50-60%.

5.1.4 Proxy Soak Test

Short-term tests (10-20 minutes) recorded maximum jitters between 194-206μs.

To simulate the 48-hour soak test maximum jitter, an additional 30% scaling was

applied to the short-term test maximum jitter. This 30% rule-of-thumb scaling was

derived from the ratio between the rounded highest and lowest recorded maximum

jitters.

Table 5.1.4-1: Proxy soak tests with stress-ng RAM and CPU stress test running

(Debug build mode, 10ms scan cycle).

Table 5.1.4-2: Proxy soak tests with stress-ng RAM and CPU stress test running

(Release build mode, 500μs scan cycle).

The jitter upper limit is determined by the selected cycle period. The jitter must not

exceed 2% of the cycle period. For a 10ms cycle, the maximum jitter must therefore

be lower than 200μs, and for a 5ms cycle, the maximum jitter must be lower than

100μs.

Avg. RAM usage (%)

Test results

37 27 25 22 21

Scaled maximum jitter (μs) 188.5 160.0 160.0 100.1 154.7

Maximum sleep interval (μs) 7374 7558 7718 8241 7663

Avg. RAM usage (%)

Test results

34 27 24 20 20

Scaled maximum jitter (μs) 83.2 74.1 74.1 85.8 81.9

Maximum sleep interval (μs) 133 147 147 239 126

36

5.1.5 Light Load Tests

 Lighter load tests were conducted to see how light the system resource

utilization has to be for the Pi to achieve better maximum jitter to support quicker scan

cycles. This involved significantly reducing the amount of memory allocated to

stress-ng memory stressor workers.

Avg. RAM usage (%) 21

Scaled maximum jitter (μs) 27.3

Maximum sleep interval (μs) 8537

Table 5.1.5-1: Light load test results (Debug build mode, 10ms scan cycle).

Avg. RAM usage (%) 18

Scaled maximum jitter (μs) 16.9

Maximum sleep interval (μs) 393

Table 5.1.5-2: Light load test results (Release build mode, 500μs scan cycle).

stress-ng was used to stress the memory using 64 concurrent workers, with 1MiB

allocated to each. From this result, the achieved maximum jitter stayed bounded below

20-30μs. This is sufficient to support a 1ms scan cycle at the quickest (for a tolerance

of <2% of cycle time maximum jitter). Depending on the exact application, the Pi is

capable of fast motion control and multitasking, but is bottlenecked by the memory

bus bandwidth.

From the results, the real-time performance of the Pi is not necessarily affected

by the total percentage of RAM used, but rather the bandwidth utilization. The Pi is

still capable of supporting scan cycles <10ms despite a large number of concurrent

processes accessing RAM, but only such that each process does so in small enough

chunks at one time.

37

5.1.6 Floating above Idle Test

 This test is run without stress-ng or any other stressors in the background, other

than the components needed for operation. Real-time performance should always be

tested with additional stress conditions. However, the results of this test show the

asymptote of real-time performance as the system load tends towards idle (best

performance under perfectly ideal low system load).

Avg. RAM usage (%) 17

Scaled maximum jitter (μs) 19.5

Maximum sleep interval (μs) 8868

Table 5.1.6-1: Floating above idle test results

(20-minute run, Debug build mode, 10ms scan cycle).

Avg. RAM usage (%) 14

Scaled maximum jitter (μs) 14.3

Maximum sleep interval (μs) 405

Table 5.1.6-2: Floating above idle test results

(20-minute run, Release build mode, 500μs scan cycle).

5.1.7 12-Hour Test: Floating above Idle

Avg. RAM usage (%) 15

Maximum jitter (μs) 22

Maximum sleep interval (μs) 289

Table 5.1.7-1: Floating above idle test results

(12-hour run, Release build mode, 500μs scan cycle).

Without any stress load, the maximum jitter recorded over a 12-hour test run is 22μs.

Comparing the 12-hour and the 20-minute run for the Release build, the 30% scaled

maximum jitter is still significantly lower than the actual maximum jitter recorded.

Hence, the 30% rule of thumb clearly does not work in this condition. Whilst the

recorded maximum jitter is still lower than the 25μs upper bound (to satisfy <5% jitter

for a 500μs cycle), it is not significantly lower with just a 3μs difference.

38

5.1.8 Testing of Heuristic: 12-Hour Light Soak Test

The additional 30% scaling heuristic was tested by conducting a 12-hour light

soak test, using the same lighter stress load (upper bound of 25% RAM utilization).

Avg. RAM usage (%) 22

Actual maximum jitter (μs) 78

Maximum sleep interval (μs) 78

Table 5.1.8-1: 12-hour light soak test results (Release build mode, 500μs scan cycle).

Given that in Table 5.1.4-2, the scaled maximum jitter was 74.1μs for the 24-27%

RAM usage regime, it is not far off from the actual 78μs maximum jitter measured

from the 12-hour run.

5.1.9 Jitter Distribution

 The following plots were obtained from short 20-minute test runs. Although

real-time characteristics are quantified in terms of maximum jitter and latency

recorded during worst-case scenarios, it is still useful to study the distribution of cycle

jitter albeit from short test runs. In the following figures, the dashed orange lines

indicate the boundary of +/–1σ (one standard deviation) away from the average.

Figure 5.1.9-1: Jitter Distribution under Stress Load.

39

Figure 5.1.9-2: Jitter Distribution when Floating above Idle.

In both Figure 5.1.9-1 and Figure 5.1.9-2, there is a long tail to the right that drops

sharply from the average. In Figure 5.1.9-1, the distribution follows a more Bell-curve

like shape, in contrast with Figure 5.1.9-2 that has more of an exponentially decreasing

curve. Although the long right tail in Figure 5.1.9-1 also appears like an exponentially

decreasing curve, more intermediate points exist between the average and the

maximum values, whereas in Figure 5.1.9-2, the frequency drop is much more abrupt.

5.1.10 Real-Time Performance Test Caveats

 There are some notable caveats with regards to the real-time performance of

the Pi. Primarily, real-time performance may vary widely with respect to the software

architecture. In this project, only one EtherCAT MainDevice is tested, which runs in

user mode. Better real-time performance may be attainable using a kernel-mode

EtherCAT MainDevice, such as the IgH Etherlab Master developed and maintained

by Florian Pose (Ingenieurgemeinschaft, 2025). Despite these caveats, the test results

indicate that the Pi is able to guarantee cycle times of at least 5ms with less than 2%

maximum jitter for the majority of applications with sufficiently light system load.

40

5.1.11 IIoT Integration Test

Tested Aspect Qualitative Result

Supabase API Gateway Codes All returned status code 200 (Success)

PLC Real-Time Performance

Impact

None. Cycle time fully respected and jitter stays

under 2% cycle time threshold (10ms cycle).

Maximum jitter recorded was 35μs.

Mobile Client Occasional UI rendering issues; Assets sometimes

load slowly and animations get skipped.

HMI UI elements respond slowly, but are sent to the

PLC relatively quickly.

Table 5.1.11-2: Qualitative Integration Test Results.

Most issues uncovered during IIoT integration testing are frontend-related. Often

having to do with the UI, this is not critical as the transmission of data on the backend

of each node remains to be adequately reliable. One caveat of the integration test is

that none of the nodes are subjected to soak tests, each node was subjected to normal

loads, hence are not floating above idle, either.

Integration test durations are also short, as the internet connection is provided

by the SM-A528B/DS hotspot. Using the building network to connect to the internet

is a security risk, hence the duration of an integration test run never exceeded the

duration of a work day.

41

5.2 Discussion

If the Pi is used for deployment, it should be run in console mode only to reduce

the overhead introduced by a graphical desktop environment. VNC, RDP, or any other

remote GUI interfacing should be avoided, and disabled when the PLC is running its

control loop(s). Any serious deployment of the Pi must also exclusively use a dedicated

SSD for maximum reliability. A microSD card is simply not a reliable storage medium,

especially for host hardware running real-time control software. Internet connection

should best be limited to a dedicated non-real-time Ethernet NIC.

From experimentation, without the use of memory lock syscalls, GUI

applications almost always cause some missed cycles. This might be due to disk I/O

DMA, that cannot be preempted even by real-time tasks on SCHED_FIFO. Calling

mlockall() at the start of the real-time program seem to have made the real-time tasks

resilient, even while the memory and disk I/O are stressed. As described in Madden

(2019), the usage of memory locking in real-time contexts such as this is typical.

Nevertheless, it is best for any graphical HMIs to be hosted on a separate device. The

Pi is best suited for process data acquisition, light processing, and retransmission; to

be done without the overhead of a graphical desktop environment.

 With the knowledge that web browsers such as Chromium and Firefox require

large memory and disk bandwidths, concurrent memory and disk stress tests were

conducted using stress-ng, which reproduced the missed cycle deadlines and

EtherCAT timeouts. Since this ultimately depends on hardware implementation of

memory and disk I/O management of the host hardware, a different architecture

(different SoC or a typical x86 motherboard configuration) may offer better real-time

task resilience. However, mlockall() does provide a safeguard against page faults by

guaranteeing that mapped pages of the calling process will stay in physical memory

and are not evicted until munlockall() is called or the process terminates.

It is however, important to note that exact control operations of hardware

resources cannot be preempted by user-space processes, despite being scheduled using

SCHED_FIFO at high priorities. Unbounded latencies may still occur due to hardware

controller operations, which are outside the control of even the kernel.

42

 Other possibly confounding factors namely inter-process communications

were eliminated, both theoretically and experimentally. iceoryx2 is a lock-free wrapper

of shared memory for inter-process communications. As such, it could not have

blocked on any RwLocks or Mutexes (as none exist in the API internal data path) and

would have simply returned errors if samples are not successfully sent or received.

This was also tested experimentally; with or without inter-process communication

operations, the presence of missed deadlines only respond to significant concurrent

memory and disk loads, which can be triggered by normal web browsing and

stress-ng.

5.2.1 Sub-Millisecond Real-Time Performance

At least in Release build mode, the Pi is able to support sub-millisecond scan

cycles, however, from testing, it is unable to support maximum cycle jitter of <3% of

the cycle time for a 500μs cycle, if the specific PLC runtime architecture in this report

is used without additional load (floating above idle). With a sufficiently light system

load, it can achieve a maximum jitter of <5% of a 500μs cycle, amounting to a bound

on the maximum jitter of 25μs. Since this level of performance is only observed with

light stress tests, the ability to support sub-millisecond cycles on the Pi is only a limited

guarantee and heavily depends on the exact application.

43

5.2.2 Comparison with Equivalent Benchmarks

Qiu, Varis, and McArthur (2024) tested a CODESYS system deployed on

several Texas Instruments ARM SoCs. One SoC tested was the AM62x, a quad-core

SoC with 512KB of shared L2 cache clocked at 1.4GHz maximum. The AM62x is the

most equivalent SoC to the quad-core BCM2712 of the Raspberry Pi 5, though the

BCM2712 does have a higher clock frequency at 2.4GHz.

The rest of the SoCs tested by Qiu et al. had specifications that were too

disparate from the BCM2712 that would make it an unfair comparison either way.

Namely, the AM69 is an octa-core SoC clocked at 2GHz with 1MB of shared L2 cache,

while the AM64x is a dual-core SoC clocked at 800-1000MHz, with 256KB of shared

L2 cache. It is important to note that the results from Qiu et al. did not involve a stress

load running concurrently. Hence, an ideally light load.

SoC Maximum jitter

recorded (μs)

Maximum cycle time

(μs)

Minimum time spent

not working (μs)

AM62x 116 700 300

AM69 53 384 616

TDA4VM 65 371 629

AM64x 973 1906 0

Table 5.2.2-1: Adapted results from Qiu et al. (2024). The column “Minimum time

spent not working” is derived by subtracting the 1ms cycle time used by Qiu et al.

from the maximum recorded cycle time.

For the particularly underpowered AM64x, it failed to respect the 1ms cycle at least

once. The Raspberry Pi 5B recorded a maximum jitter of 210μs in the worst-case stress

test, and 22μs when floating above idle. The AM62x recorded 116μs without a

concurrent stress load.

44

5.2.3 Functional Safety

Soft PLCs are incredibly powerful and flexible, but being used for real-time

controls, there are a lot more critical factors that need to be taken into consideration to

ensure reliable and safe operation. Being soft real-time systems, (non-safety) PLCs

cannot be solely relied upon for safety. Although PREEMPT_RT promises bounded

latencies, it does not provide any theoretical and formally quantifiable bounds. It is

practically impossible to statically analyze a GPOS such as in the case of a Linux

PREEMPT_RT-enabled distro the same way more typical RTOSs (or bare-metal/OS-

less control subsystems) are analyzed (Reghenzani, Massari, & Fornaciari, 2019).

Ultimately, hard real-time systems (e.g. aerospace, automobile passive

restraints, nuclear fission reactors, etc.) are application-specific, and require

bespokely-architected solutions. When used as part of a larger application system (e.g.

assembly line, continuous/batch chemical processes, etc.), soft real-time subsystems

by themselves are not sufficient. The vast majority of non-safety PLCs on the market

fall within the category of soft real-time, as even ‘hard’ microcontroller-based non-

safety PLCs are designed to operate in general situations, and not with any specific

production floor layouts and contextual factors in mind.

However, the degree to which an entire application system is functionally safe

cannot be quantified by the real-time firmness of the PLC alone. In practice, functional

safety must be realized with hard real-time safety subsystems (e.g. e-stops, light

curtains, safety relays, FSoE, PROFISAFE, etc.). Any application system cannot

solely rely on any single specific subsystem to implement functional safety, at least up

to the required SIL in accordance with relevant standards.

45

5.2.4 The Pi vs. Other Host Hardware

 Compared to less-capable though cheaper SBCs, the quad-core ARM SoC of

the Pi can be used for redundant processing or independent concurrent control of

multiple processes, with lower power consumption and better thermals. The Pi is more

capable of running the plethora of computer vision libraries and APIs, and is more

capable of edge inference of vision or machine learning models. This makes it a

compelling alternative against vendor-locked peripherals and software stack (an

example being vision solutions from KEYENCE).

 However, the ability to run such additional software is not unique to the Pi, as

they can be deployed on any host hardware running a GPOS. When contrasted with

more expensive industrial PC offerings (such as ones from ASRock, Advantech, etc.),

in the vast majority of situations, the latter is orders of magnitude more reliable; being

purpose-built for use in industrial environments. The Pi has scant advantages

compared to IPCs, notwithstanding its lower upfront cost.

5.2.5 Improving Operational Security

 IR 4.0 principles inherently require a network of control devices. Such network

of control devices serve as a wide attack surface (Honeywell International, 2021). This

is unavoidable, but it does not mean that it cannot be mitigated with best operational

security practices. Currently, by virtue of being an experimental system, the PLC

runtime makes calls to the remote database via HTTPS with encrypted payloads.

Nonetheless, this is not enough, a VPN tunnel should be used and is in fact already

standard practice in the industry. Zero trust should also be assumed; processes should

be executed with the least amount of privilege possible for operation.

 The subsystem binaries are also run as root. This can be avoided by setting the

minimum required capabilities for non-root user(s) to run the binaries. Supervisory

tools such as Monit can be used to periodically check for suspicious processes and

system resource utilization. In particular, Monit can be used to send alerts and be set

up to judiciously execute specific actions, such as sending SIGTERM/SIGKILL to

misbehaving non-critical processes.

46

5.2.6 Extending Support for IEC 61131-3

 IEC 61131-3 describes the industry standard for programming languages used

to program PLCs, among which, Structured Text and Ladder Diagram being the most

popular. Unfortunately, feature-complete open source standalone compilers for IEC

61131-3 are few and far between. This is in stark contrast with general purpose

programming languages such as C, which has numerous standards-compliant

compilers. Part of this discrepancy is due to the tight coupling between the compiler

and the runtime in typical proprietary IEC 61131-3 implementations, and the relative

simplicity of C itself.

Despite this, compilers such as MATIEC and RuSTy exist, though the former

is not active, while the latter is still under heavy development. Both of these compilers

are also vastly different in implementation. MATIEC is written in C++ and works by

converting IEC 61131-3 source code into ANSI C, whereas RuSTy is written in Rust

and utilizes LLVM as the backend, hence generating LLVM IR from Structured Text

source code. It is important to note that these are standalone compilers, and a dedicated

runtime must be built upon the API provided by these compilers, should any future

work be done to support IEC 61131-3. Basic features such as online changes or hot

reloading/swapping are then up to the runtime implementation. This will involve

additional subsystems such as a debugger for online variable read/writes.

5.2.7 Lock-Free Design

The control logic should ideally not hold locks to the data structure also

accessed by the EtherCAT MainDevice. Currently, this is not much of an issue, as the

lock accesses are carefully laid out and control logic evaluation is synchronous, hence

blocking. However, this is not a resilient or expandable design, and is prone to

deadlocking. Additionally, it prevents separation of cyclic tasks. A single EtherCAT

MainDevice cyclic task should be able to handle process data for multiple (a)cyclic

tasks that may run on different cycle times. This is the implementation used by

CODESYS and some of its derivates; for example, PLCNext (CODESYS Group, n.d.-

a; WAGO GmbH, 2022). Holding locks to shared data structures makes this common

setup impossible to implement without additional overhead for complex task

scheduling. Despite that, if more than one task has write access, a Mutex is the simplest

solution, as implemented by TwinCAT 3 (Beckhoff Automation, n.d.-c).

47

5.2.8 Relevance to Open Process Automation (OPA)

A software-defined approach for PLCs is a critical part of implementing an

open and interoperable system. An open-source soft PLC runtime and development

environment builds upon the already-pervasive CODESYS platform used by different

vendors. Despite that, CODESYS remains to be a closed-source, proprietary platform.

Its closed-source nature remains to be an obstacle against completely liberating

industrial automation from vendor locking. For example, Beckhoff had announced

TwinCAT PLC++, a complete rewrite of their CODESYS-based soft PLC runtime and

development environment (Beckhoff Automation, n.d.-d).

While it appears to be a promisingly great product, Beckhoff has no plans to

make it completely vendor-agnostic, and such exclusivism is inherently against the

openness ethos. It is then imperative that an open-source, community-led soft PLC

runtime and development environment is worked on, and this particular project

discussed in this report is a glimpse of such vision.

A relevant industrial standard to gauge openness and interoperability is the

O-PAS standard, published and maintained by The Open Group, a coalition of over

100 industry members (The Open Group, n.d.). Such open-source, Linux-based PLC

platform would satisfy Application Layer L as defined in Part 1 of the O-PAS Standard

(The Open Group, 2023). Any sort of vendor-locking will tie the entire layer to specific

hardware, or at least limit interoperability at Layers L and above. An open and modular

software architecture akin to the one implemented in this project also readily lends

itself to operating as a DCN, as is already being used at ExxonMobil’s Resin Finishing

Plant in Baton Rouge, Louisiana (Kasprzak, 2025).

48

5.3 Sustainability

The project finds relevance in four of the 17 United Nations Sustainable

Development Goals (UNSDG), spanning across three pillars of sustainability, namely;

Environmental, Social, and Economic.

5.3.1 Environmental

Target Project relevance

7.b Expand infrastructure and upgrade

technology for supplying modern

and sustainable energy services

Modular and flexible software-

defined architecture adapts to

existing instrumentation, facilitating

infrastructure control system

expansion and upgrade

Table 5.3.1-1: Project Environmental UNSDG (Goal 7).

Adapted from United Nations (2015).

Target Project relevance

11.2 Provide access to safe, affordable,

accessible, and sustainable

transport systems by expanding

public transport

Project is sufficiently robust to

support non-critical control systems

for public transport infrastructure

such as access control, ticketing,

station platform HMIs, surveillance

and assistance request systems

Table 5.3.1-2: Project Environmental UNSDG (Goal 11).

Adapted from United Nations (2015).

The project supports Target 7.b in expanding infrastructure and upgrading technology

in the service of sustainable energy services. The modular and flexible software-

defined architecture seamlessly integrates with existing instrumentation, directly

facilitating the expansion and upgrade of the control systems that power infrastructure.

In addition, the project supports Target 11.2 in a similar manner. Public

transportation infrastructure also requires non-critical control systems that can be

controlled with sufficient robustness using the system implemented in this project.

Non-critical control systems do not require airtight functional safety guarantees. The

system implemented may be applied in HMIs that simply visualize and show time of

49

arrival, station information, etc., whose downtime will not result in catastrophic failure.

Hence, such applications do not require functional safety and can benefit from the open

architecture of the system.

5.3.2 Economic

Target Project relevance

9.3 Increase access of small-scale

industrial and other enterprises to

integration into value chains and

markets

Offers lower cost alternative for

automating facilities and machinery,

without sacrificing state of the art

IR 4.0 capabilities

9.4 Upgrade infrastructure and retrofit

industries to make them

sustainable

Hardware-agnostic, open source

architecture maximize compatibility

with wide variety of already-existing

equipment

9.b Support domestic technology

development, research and

innovation in developing countries

This project lays the groundwork for

a Malaysian product to make a break

in the automation industry

Table 5.3.2-1: Project Economic UNSDG. Adapted from United Nations (2015).

With regards to the Economic pillar of Sustainability, the project aids in advancing

inclusive industrialization and innovation, as per UNSDG 9. More specifically, per

Target 9.3, the project enables small-scale enterprises to embrace and adopt

automation and not be left behind in IR 4.0. The hardware-agnostic and open-source

architecture maximizes compatibility with existing equipment, thus helping to achieve

Target 9.4 which aims to upgrade infrastructure and retrofit industries to make them

sustainable.

 The project comprehensively leverages cost-effective, software-defined

solutions that can be supported even on commodity hardware, thus lowering the barrier

to entry and leveling up the playing field for small- and medium-scale enterprises.

Furthermore, the solution that the project offers can extend the operational lifespan of

legacy systems that are still capable of operation. This ultimately increases resource

efficiency and reduces waste.

50

5.3.3 Social

Target Project relevance

17.6 Enhance cooperation on and

access to science, technology, and

innovation and enhance

knowledge sharing

Project abides by GNU General

Public License; Learnings from the

project have been shared publicly to

the global open source community

17.16 Enhance the Global Partnership

for Sustainable Development;

Mobilize and share knowledge,

expertise, technology

Project relied on FOSS

dependencies; Contributors to open-

source dependencies are from all

around the globe

Table 5.3.3-1: Project Social UNSDG. Adapted from United Nations (2015).

The project also finds significant relevance in the Social pillar of Sustainability. In

particular, the project fosters scientific and technological cooperation and knowledge

sharing, thus helping to reach Target 17.6. The dependencies used in the

implementation of the project are all open-source, whose contributors coming from

various backgrounds and nationalities. The project aids to enhance the global

partnership for sustainable development by mobilizing and sharing knowledge,

expertise, and technology. The project was not developed in a vacuum, and numerous

knowledge exchange within the open source community was involved in its

development.

 This project is deeply rooted in the FOSS ecosystem, and does not live in a silo.

Rather, its source code, documentation, and implementation insights are openly

accessible thus lending itself to community collaboration. The indirect effect of being

an open source project is the low direct cost of auditing, as the source is publicly

accessible and contributors have a vested interest in the quality of dependencies in the

FOSS ecosystem. The Social aspect is especially significant due to the self-reinforcing

cycle of quality and accountability, as the development does not occur behind opaque

walls.

51

6.0 Conclusion

 In conclusion, the project has successfully met the objectives set out. The

feasibility of a fully open-source based commercial-grade automation system is

possible within the realm of building automation. A functional prototype of a BAS was

created using a fully FOSS stack, hence demonstrating the feasibility of applying open

source tools. HMI/SCADA functionality and IIoT integration was demonstrated across

multiple platforms including desktop and mobile. Deployment reliability was

quantified by measuring jitter, latency, uptime, system resource utilization, and CPU

temperature range. The extent of possible future expansion into more critical

applications was also evaluated, taking into consideration possible expansion into

process automation and involvement of motion controls and functional safety.

52

References

Baeldung. (2023, May 5). Guide to the “Cpu-Bound” and “I/O Bound” Terms.

Retrieved July 7, 2025, from https://www.baeldung.com/cs/cpu-io-bound

Ballo, T., Ballo, M., & James, A. (2022). High Assurance Rust: Developing Secure

and Robust Software [Online]. https://highassurance.rs

Beckhoff Automation. (2021, November 15). “We are ensuring a competitive

advantage.” Retrieved June 10, 2025, from https://www.beckhoff.com/en-

en/company/news/we-are-ensuring-a-competitive-advantage.html

Beckhoff Automation. (2023). Documentation | EN KL6581 and KL6583

EnOcean Master Terminal and Receiver. Retrieved July 17, 2025, from

https://www.beckhoff.com/ms-my/support/download-finder/search-

result/?download_group=37014605&download_item=356189743

Beckhoff Automation. (n.d.-a). TwinCAT 2 | System Concept. Beckhoff Information

System - English. Retrieved June 12, 2025, from https://infosys.beckhoff.com

/english.php?content=../content/1033/tcsystemover/12695813131.html&id=

Beckhoff Automation. (n.d.-b). TwinCAT 3 | Basics — Real-Time. Beckhoff

Information System - English. Retrieved June 12, 2025, from

https://infosys.beckhoff.com

/english.php?content=../content/1033/tcsystemover/12695813131.html&id

Beckhoff Automation. (n.d.-c). Multi-task data access synchronization in the PLC.

Beckhoff Information System. Retrieved July 3, 2025, from

https://infosys.beckhoff.com/english.php?content=../content/1033/tc3_plc_int

ro/45844579955484184843.html&id=

Beckhoff Automation. (n.d.-d). TwinCAT PLC++: Next generation PLC technology.

Retrieved July 3, 2025, from https://www.beckhoff.com/en-

en/company/news/twincat-plc-next-generation-plc-technology.html

Beckhoff Automation. (n.d.-e). TwinCAT | Automation software. Retrieved July 8,

2025, from https://www.beckhoff.com/en-en/products/automation/twincat/

Beckhoff Automation. (n.d.-f). EtherCAT | System Description. Beckhoff Information

System. Retrieved July 23, 2025, from

https://infosys.beckhoff.com/english.php?content=../content/1033/ethercatsys

tem/1036980875.html&id

https://www.baeldung.com/cs/cpu-io-bound
https://highassurance.rs/
https://www.beckhoff.com/en-en/company/news/we-are-ensuring-a-competitive-advantage.html
https://www.beckhoff.com/en-en/company/news/we-are-ensuring-a-competitive-advantage.html
https://www.beckhoff.com/ms-my/support/download-finder/search-result/?download_group=37014605&download_item=356189743
https://www.beckhoff.com/ms-my/support/download-finder/search-result/?download_group=37014605&download_item=356189743
https://infosys.beckhoff.com/english.php?content=../content/1033/tcsystemover/12695813131.html&id=
https://infosys.beckhoff.com/english.php?content=../content/1033/tcsystemover/12695813131.html&id=
https://infosys.beckhoff.com/english.php?content=../content/1033/tcsystemover/12695813131.html&id
https://infosys.beckhoff.com/english.php?content=../content/1033/tcsystemover/12695813131.html&id
https://infosys.beckhoff.com/english.php?content=../content/1033/tc3_plc_intro/45844579955484184843.html&id
https://infosys.beckhoff.com/english.php?content=../content/1033/tc3_plc_intro/45844579955484184843.html&id
https://www.beckhoff.com/en-en/company/news/twincat-plc-next-generation-plc-technology.html
https://www.beckhoff.com/en-en/company/news/twincat-plc-next-generation-plc-technology.html
https://www.beckhoff.com/en-en/products/automation/twincat/
https://infosys.beckhoff.com/english.php?content=../content/1033/ethercatsystem/1036980875.html&id
https://infosys.beckhoff.com/english.php?content=../content/1033/ethercatsystem/1036980875.html&id

53

Broling, T. (2007, September 5). File:EthercatOperatingPrinciple.webm - Wikimedia

Commons. Retrieved July 8, 2025, from https://commons.wikimedia.org

/wiki/File:EthercatOperatingPrinciple.webm

Brown, J. H., & Martin, B. (2010). How fast is fast enough? Choosing between

Xenomai and Linux for real-time applications. Invariant Systems Inc.,

Cambridge. MA. Tech. Rep. [Online]. Retrieved from https://web.

archive.org/web/20151004142300/https://www.osadl.org/fileadmin/dam/rtlw

s/12/Brown.pdf

CODESYS Group. (2024). Definitions of Jitter and Latency. Retrieved July 7, 2025,

from https://content.helpme-codesys.com/en/CODESYS%20Dev

elopment%20System/_cds_task_configuration_jitter_definitions.html

CODESYS Group. (n.d.-a). Bus Cycle Task – EtherCAT. Retrieved July 3, 2025, from

https://content.helpme-codesys.com/en/CODESYS%20EtherCAT/

_ecat_buscycle_task.html

CODESYS Group. (n.d.-b). Your device with CODESYS. Retrieved July 7, 2025, from

https://www.codesys.com/device-manufacturers/codesys-for-you/your-

device-with-codesys/

Dunn, A. (2009, June 12). The Father of Invention: Dick Morley looks back

on the 40th anniversary of the PLC. Manufacturing AUTOMATION.

https://www.automationmag.com/855-the-father-of-invention-dick-morley-

looks-back-on-the-40th-anniversary-of-the-plc/

Durumeric, Z., Li, F., Kasten, J., Amann, J., Beekman, J., Payer, M., Weaver, N.,

Adrian, D., Paxson, V., Bailey, M., & Halderman, J. A. (2014, November).

The Matter of Heartbleed. In Proceedings of the 2014 Conference on Internet

Measurement Conference (pp. 475-488).

https://dl.acm.org/doi/pdf/10.1145/2663716.2663755

EnOcean Alliance. (2017). EnOcean Equipment Profiles (EEP). EnOcean Alliance -

Technical Task Group Interoperability. Retrieved July 17, 2025, from

https://www.enocean-alliance.org/wp-content/uploads/2017/05/

EnOcean_Equipment_Profiles_EEP_v2.6.7_public.pdf

EtherCAT Technology Group FAQ. (2025). EtherCAT Technology Group.

https://www.ethercat.org/en/faq.html#779

Feo-Arenis, S., Westphal, B., Dietsch, D., Muñiz, M., Andisha, S., & Podelski, A.

(2016). Ready for testing: ensuring conformance to industrial standards

https://commons.wikimedia.org/wiki/File:EthercatOperatingPrinciple.webm
https://commons.wikimedia.org/wiki/File:EthercatOperatingPrinciple.webm
https://web.archive.org/web/20151004142300/https:/www.osadl.org/fileadmin/dam/rtlws/12/Brown.pdf
https://web.archive.org/web/20151004142300/https:/www.osadl.org/fileadmin/dam/rtlws/12/Brown.pdf
https://web.archive.org/web/20151004142300/https:/www.osadl.org/fileadmin/dam/rtlws/12/Brown.pdf
https://content.helpme-codesys.com/en/CODESYS%20Development%20System/_cds_task_configuration_jitter_definitions.html
https://content.helpme-codesys.com/en/CODESYS%20Development%20System/_cds_task_configuration_jitter_definitions.html
https://content.helpme-codesys.com/en/CODESYS%20EtherCAT/_ecat_buscycle_task.html
https://content.helpme-codesys.com/en/CODESYS%20EtherCAT/_ecat_buscycle_task.html
https://www.codesys.com/device-manufacturers/codesys-for-you/your-device-with-codesys/
https://www.codesys.com/device-manufacturers/codesys-for-you/your-device-with-codesys/
https://www.automationmag.com/855-the-father-of-invention-dick-morley-looks-back-on-the-40th-anniversary-of-the-plc/
https://www.automationmag.com/855-the-father-of-invention-dick-morley-looks-back-on-the-40th-anniversary-of-the-plc/
https://dl.acm.org/doi/pdf/10.1145/2663716.2663755
https://www.enocean-alliance.org/wp-content/uploads/2017/05/EnOcean_Equipment_Profiles_EEP_v2.6.7_public.pdf
https://www.enocean-alliance.org/wp-content/uploads/2017/05/EnOcean_Equipment_Profiles_EEP_v2.6.7_public.pdf
https://www.ethercat.org/en/faq.html#779

54

through formal verification. Formal Aspects of Computing, 28(3), 499–527.

https://doi.org/10.1007/s00165-016-0365-3

Heller, M. (2023, February 3). What is garbage collection? Automated memory

management for your programs. InfoWorld. Retrieved July 22, 2025, from

https://www.infoworld.com/article/2337816/what-is-garbage-collection-

automated-memory-management-for-your-programs.html

Henriksson, R. (1998). Scheduling Garbage Collection in Embedded Systems

[PhD dissertation, Lund University].

https://portal.research.lu.se/files/5860617/630830.pdf

Honeywell International. (2021). Application Whitelisting for Better Industrial

Control System Defense - Service Note (SV-21-04-ENG). Retrieved

June 30, 2025, from https://process.honeywell.com/content/dam/process/

en/documents/gated/Honeywell-AWL-Service-Note.pdf

Huang, J., & Yang, C.F. (2017). Effectively Measure and Reduce Kernel Latencies

for Real-Time Constraints. Embedded Linux Conference North America,

Portland, Oregon, United States. http://events17.linuxfoundation.org/sites/

events/files/slides/ELC2017-%20Effectively%20Measure%20and%20Reduc

e%20Kernel%20Latencies%20for%20Real-

time%20Constraints%20%281%29.pdf

Ingenieurgemeinschaft. (2025). IgH EtherCAT Master 1.6.6 Documentation (1.6.6-2-

gb82a6673). Retrieved July 7, 2025, from https://docs.etherlab.org/

ethercat/1.6/pdf/ethercat_doc.pdf

Intel Corporation. (2022). Improving Real-Time Performance of CODESYS Control

Applications with Intel’s Real-Time Technologies (757527-1.0). Retrieved July

1, 2025, from https://builders.intel.com/solutionslibrary/improving-real-time-

performance-of-codesys-control-applications-with-intel-s-real-time-

technologies

International Electrotechnical Commission. (2023). Industrial Communication

Networks - Fieldbus Specifications - Part 1: Overview and Guidance for the

IEC 61158 and IEC 61784 Series (IEC 61158-1:2023). Retrieved June 10,

2025, from https://webstore.iec.ch/en/publication/66931

International Electrotechnical Commission. (2024). Programming Languages — C

(ISO/IEC Standard No. 9899:2024). https://www.iso.org/standard/82075.html

https://doi.org/10.1007/s00165-016-0365-3
https://www.infoworld.com/article/2337816/what-is-garbage-collection-automated-memory-management-for-your-programs.html
https://www.infoworld.com/article/2337816/what-is-garbage-collection-automated-memory-management-for-your-programs.html
https://portal.research.lu.se/files/5860617/630830.pdf
https://process.honeywell.com/content/dam/process/en/documents/gated/Honeywell-AWL-Service-Note.pdf
https://process.honeywell.com/content/dam/process/en/documents/gated/Honeywell-AWL-Service-Note.pdf
http://events17.linuxfoundation.org/sites/events/files/slides/ELC2017-%20Effectively%20Measure%20and%20Reduce%20Kernel%20Latencies%20for%20Real-time%20Constraints%20%281%29.pdf
http://events17.linuxfoundation.org/sites/events/files/slides/ELC2017-%20Effectively%20Measure%20and%20Reduce%20Kernel%20Latencies%20for%20Real-time%20Constraints%20%281%29.pdf
http://events17.linuxfoundation.org/sites/events/files/slides/ELC2017-%20Effectively%20Measure%20and%20Reduce%20Kernel%20Latencies%20for%20Real-time%20Constraints%20%281%29.pdf
http://events17.linuxfoundation.org/sites/events/files/slides/ELC2017-%20Effectively%20Measure%20and%20Reduce%20Kernel%20Latencies%20for%20Real-time%20Constraints%20%281%29.pdf
https://docs.etherlab.org/ethercat/1.6/pdf/ethercat_doc.pdf
https://docs.etherlab.org/ethercat/1.6/pdf/ethercat_doc.pdf
https://builders.intel.com/solutionslibrary/improving-real-time-performance-of-codesys-control-applications-with-intel-s-real-time-technologies
https://builders.intel.com/solutionslibrary/improving-real-time-performance-of-codesys-control-applications-with-intel-s-real-time-technologies
https://builders.intel.com/solutionslibrary/improving-real-time-performance-of-codesys-control-applications-with-intel-s-real-time-technologies
https://webstore.iec.ch/en/publication/66931
https://www.iso.org/standard/82075.html

55

Kasprzak, S. (2025, March 3). New insights: 100-controller ExxonMobil Open

Process Automation. Control Engineering. Retrieved July 17, 2025, from

https://www.controleng.com/new-insights-100-controller-exxonmobil-open-

process-automation/

Madden, M. M. (2019). Challenges Using Linux as a Real-Time Operating System.

NASA Langley Research Center. Retrieved July 7, 2025, from

https://www.researchgate.net/publication/330199464_Challenges_Using_Lin

ux_as_a_Real-Time_Operating_System

McKenney, P. (2005, August 10). A Realtime Preemption Overview. LWN.net.

Retrieved June 12, 2025, from https://lwn.net/Articles/146861/

Microsoft. (2006, June 29). Benchmarking Real-Time Determinism in Microsoft

Windows CE. Microsoft Learn. Retrieved June 12, 2025, from

https://learn.microsoft.com/en-us/previous-versions/windows/embedded

/ms836535(v=msdn.10)?redirectedfrom=MSDN

Microsoft. (2019, July 18). We need a safer systems programming language. Microsoft

Security Response Center. Retrieved July 23, 2025, from

https://msrc.microsoft.com/blog/2019/07/we-need-a-safer-systems-

programming-language/

Milewski, B. (2015, January 13). Simple algebraic data types. Bartosz Milewski’s

Programming Cafe. Retrieved July 23, 2025, from

https://bartoszmilewski.com/2015/01/13/simple-algebraic-data-types/

Perez, D. J., Waltl, J., Prenzel, L., & Steinhorst, S. (2022, September). How Real

(Time) are Virtual PLCs? In 2022 IEEE 27th International Conference on

Emerging Technologies and Factory Automation (ETFA) (pp. 1-8). IEEE.

Qiu, D., Varis, P., & McArthur, J. (2024). Performance Metrics of TI Embedded

Processors as CODESYS EtherCAT Controller (No. SPRADH0). Texas

Instruments. Retrieved July 1, 2025, from https://www.ti.com/lit/an/spradh0/

spradh0.pdf#:~:text=The%20primary%20performance%20metric%20is%20t

he%20shortest%20achievable,both%20within%20the%20controller%20and

%20within%20the%20network.

Reghenzani, F., Massari, G., & Fornaciari, W. (2019). The Real-Time Linux Kernel:

A Survey on PREEMPT_RT. ACM Computing Surveys (CSUR), 52(1), 1-36.

Rostedt, S. (2016). Understanding a Real-Time System. Kernel Recipes, Paris, France.

https://elinux.org/images/f/f1/Rostedt.pdf

https://www.controleng.com/new-insights-100-controller-exxonmobil-open-process-automation/
https://www.controleng.com/new-insights-100-controller-exxonmobil-open-process-automation/
https://www.researchgate.net/publication/330199464_Challenges_Using_Linux_as_a_Real-Time_Operating_System
https://www.researchgate.net/publication/330199464_Challenges_Using_Linux_as_a_Real-Time_Operating_System
https://lwn.net/Articles/146861/
https://learn.microsoft.com/en-us/previous-versions/windows/embedded/ms836535‌(v=msdn.10)?redirectedfrom=MSDN
https://learn.microsoft.com/en-us/previous-versions/windows/embedded/ms836535‌(v=msdn.10)?redirectedfrom=MSDN
https://msrc.microsoft.com/blog/2019/07/we-need-a-safer-systems-programming-language/
https://msrc.microsoft.com/blog/2019/07/we-need-a-safer-systems-programming-language/
https://bartoszmilewski.com/2015/01/13/simple-algebraic-data-types/
https://www.ti.com/lit/an/spradh0/spradh0.pdf#:~:text=The%20primary%20performance%20metric%20is%20the%20shortest%20achievable,both%20within%20the%20controller%20and%20within%20the%20network
https://www.ti.com/lit/an/spradh0/spradh0.pdf#:~:text=The%20primary%20performance%20metric%20is%20the%20shortest%20achievable,both%20within%20the%20controller%20and%20within%20the%20network
https://www.ti.com/lit/an/spradh0/spradh0.pdf#:~:text=The%20primary%20performance%20metric%20is%20the%20shortest%20achievable,both%20within%20the%20controller%20and%20within%20the%20network
https://www.ti.com/lit/an/spradh0/spradh0.pdf#:~:text=The%20primary%20performance%20metric%20is%20the%20shortest%20achievable,both%20within%20the%20controller%20and%20within%20the%20network
https://elinux.org/images/f/f1/Rostedt.pdf

56

RT-mutex subsystem with PI support — The Linux Kernel Documentation. (n.d.). The

Linux Kernel Documentation. Retrieved July 7, 2025, from

https://docs.kernel.org/locking/rt-mutex.html

Siemens. (n.d.). The Virtual PLC is Revolutionizing Production at Audi.

Retrieved June 10, 2025, from https://www.siemens.com/global/

en/company/stories/industry/factory-automation/virtual-plc-audi.html

The Chromium Projects. (n.d.). Memory safety. Retrieved July 23, 2025, from

https://www.chromium.org/Home/chromium-security/memory-safety/

The Open Group. (2023). O-PASTM Standard, Version 2.1: Part 1 – Technical

Architecture Overview (Informative) (No. C230-1).

The Open Group. (n.d.). Open Group OPA Forum Membership Report. Retrieved July

3, 2025, from https://reports.opengroup.org/opa_forum.shtml

Understanding Linux Real-Time with PREEMPT_RT Training. (2025). Bootlin.

https://bootlin.com/doc/training/preempt-rt/

United Nations. (2015). Transforming Our World: The 2030 Agenda for Sustainable

Development. In United Nations Digital Library (A/RES/70/1). Retrieved July

8, 2025, from https://digitallibrary.un.org/record/3923923?v=pdf

VanderLeest, S. (2022, November 16). Linux in Aerospace: A Personal Journey.

Linux.com. Retrieved June 30, 2025, from https://www.linux.com/news/linux-

in-aerospace-a-personal-journey/

WAGO GmbH. (2022). Relationship between Bus Cycle and Task. Retrieved

July 3, 2025, from https://techdocs.wago.com/Software/EtherCAT/en-

US/1443591051.html

Wang, X., Chen, H., Cheung, A., Jia, Z., Zeldovich, N., & Kaashoek, M. F. (2012,

July). Undefined Behavior: What Happened to My Code?. In Proceedings of

the Asia-Pacific Workshop on Systems (pp. 1-7).

Wayand, B. (2020, March 20). What is a PLC (Programmable Logic Controller)?

MRO Electric Blog. https://www.mroelectric.com/blog/what-is-a-plc/

Wu, X., & Xie, L. (2019). Performance Evaluation of Industrial Ethernet Protocols for

Networked Control Application. Control Engineering Practice, 84, 208-217.

https://docs.kernel.org/locking/rt-mutex.html
https://www.siemens.com/global/en/company/stories/industry/factory-automation/virtual-plc-audi.html
https://www.siemens.com/global/en/company/stories/industry/factory-automation/virtual-plc-audi.html
https://www.chromium.org/Home/chromium-security/memory-safety/
https://reports.opengroup.org/opa_forum.shtml
https://bootlin.com/doc/training/preempt-rt/
https://digitallibrary.un.org/record/3923923?v=pdf
https://www.linux.com/news/linux-in-aerospace-a-personal-journey/
https://www.linux.com/news/linux-in-aerospace-a-personal-journey/
https://techdocs.wago.com/Software/EtherCAT/en-US/1443591051.html
https://techdocs.wago.com/Software/EtherCAT/en-US/1443591051.html
https://www.mroelectric.com/blog/what-is-a-plc/

57

Appendix A

Links to Project GitHub Repositories

The following are repositories hosted on GitHub of the software components created

to implement the project.

Main soft PLC implementation: www.github.com/andergisomon/Gipop/

IIoT Supabase-OPC UA Gateway: www.github.com/andergisomon/sunsuyon

Mobile app client: www.github.com/andergisomon/mantadsodu

http://www.github.com/andergisomon/Gipop/
http://www.github.com/andergisomon/sunsuyon
http://www.github.com/andergisomon/mantadsodu

58

Appendix B

Screenshots of Parts of the System

Figure B1: Supabase Console.

Figure B2: PLC EtherCAT and control loop process.

59

Figure B3: Remote command Supabase-OPC UA gateway process.

Figure B4: Modbus/TCP polling process.

60

Figure B5: Telegram bot process.

Figure B6: OPC UA server process.

61

Figure B7: Mobile client app

Home screen.

Figure B8: Mobile client app

Tag View screen.

62

Figure B9: Mobile client app

Chart View screen.

Figure B10: Mobile client app

Admiral disclaimer screen.

63

Figure B11: Mobile client app

Admiral screen.

Figure B12: Telegram bot notification

and chat screen on mobile.

64

Figure B13: FUXA HMI Dashboard.

Figure B14: FUXA UI element demo.

65

Appendix C

Pictures of the Physical Test Bench

Figure C1: Test bench.

Figure C2: Development laptop acting as HMI, hosting FUXA,

showing ‘Home’ screen.

66

Figure C3: Development laptop acting as HMI, hosting FUXA,

showing ‘Dashboard’ screen.

67

Appendix D

Linux Kernel Build and Boot Configuration

Link to kernel .config: https://gist.github.com/andergisomon/

f3cd74ec9829d45029abc3a906f1b6d8#file-

config

Link to kernel boot parameters: https://gist.github.com/andergisomon/

f3cd74ec9829d45029abc3a906f1b6d8#file-

kernel-boot-arguments

https://gist.github.com/andergisomon/f3cd74ec9829d45029abc3a906f1b6d8#file-config
https://gist.github.com/andergisomon/f3cd74ec9829d45029abc3a906f1b6d8#file-config
https://gist.github.com/andergisomon/f3cd74ec9829d45029abc3a906f1b6d8#file-config
https://gist.github.com/andergisomon/f3cd74ec9829d45029abc3a906f1b6d8#file-kernel-boot-arguments
https://gist.github.com/andergisomon/f3cd74ec9829d45029abc3a906f1b6d8#file-kernel-boot-arguments
https://gist.github.com/andergisomon/f3cd74ec9829d45029abc3a906f1b6d8#file-kernel-boot-arguments

68

Appendix E

Equipment Bill of Materials

The following BOM lists the equipment used for the functional demonstration of the

integrated system. Consumables such as ferrules, fuses, resistors, and stranded copper

wires are not included.

Item Description Manufacturer Part Number

Network

switch

5-port 10/100Mbps Desktop Switch TP-Link LS1005

Non-RT NIC USB to Gigabit Ethernet Adapter UGREEN CR111

Power supply DIN rail power supplies for 1-phase

system 24 V, 10 A

PULS QS10.241

EK1100 EtherCAT Coupler Beckhoff EK1100

BK1120 EtherCAT Bus Coupler for standard Bus

Terminals

Beckhoff BK1120

IRIV IO Modbus/TCP Remote I/O Extender Cytron IRIV-IOC

EL1889 EtherCAT Terminal, 16-channel digital

input, 24 V DC, 3 ms, ground switching

Beckhoff EL1889

EL2889 EtherCAT Terminal, 16-channel digital

output, 24 V DC, 0.5 A, ground switching

Beckhoff EL2889

EL3024 EtherCAT Terminal, 4-channel analog

input, current, 4…20 mA, 12 bit,

differential

Beckhoff EL3024

KL1889 Bus Terminal, 16-channel digital input,

24 V DC, 3 ms, ground switching

Beckhoff KL1889

KL2889 Bus Terminal, 16-channel digital output,

24 V DC, 0.5 A, ground switching

Beckhoff KL2889

KL6581 Bus Terminal, 1-channel communication

interface, EnOcean®, master

Beckhoff KL6581

KL6583 EnOcean®, radio transceiver, for KL6581 Beckhoff KL6583

PTM200 Push button Transmitter Device EnOcean PTM200

PLC Raspberry Pi 5 2 GB BCM2712 2.4GHz

Single Board Computer

Raspberry Pi Pi 5 2GB

Local HMI Development Laptop Acer Aspire

A315-57G

Remote HMI Smartphone Samsung SM-

A528B/DS

Humidity

Temperature

Sensor

Digital transmitter for humidity &

temperature: Space version

Rotronic HF135-

SB1XDXXX

Tower Light AC/DC 24V, Ø45mm Pole Mount Type

LED Steady Tower. Red, Amber, Green

Qlight ST45B-3-24-

RAG

Circuit

breaker

Miniature circuit breaker 230/400 V 6kA,

1-pole, C, 6 A, D=70 mm

Siemens 5SY6106-7

