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Abstract 

This project addresses the feasibility of implementing a commercial-grade 

Building Automation System (BAS) using a fully Free and Open Source Software 

(FOSS) stack, in response to the growing demand for cost-effective, transparent, 

vendor-agnostic, and interoperable automation solutions. The adoption of FOSS in 

commercial-grade automation remains limited, with key challenges encompassing 

reliability concerns, security, and standards compliance. The goal of the project is to 

evaluate the feasibility of utilizing FOSS in commercial-grade automation by building 

a functional prototype mock BAS. This was achieved by implementing a soft PLC 

running on real-time Linux (PREEMPT_RT) acting as an EtherCAT MainDevice and 

Modbus/TCP client for interfacing with remote I/O. The soft PLC is hosted on a 

Raspberry Pi 5 2GB. The reliability of the deployed system was quantified by 

measuring jitter, latency, uptime, system resource utilization, and CPU temperature. 

Real-time performance of the soft PLC under continuous heavy stress load over 48 

hours resulted in maximum jitter measurement of 210μs, with CPU temperature 

hovering around 60°C. Typical maximum jitters measured vary from 22-210μs from 

no stress load to maximum stress load. Testing of the Industrial Internet of Things 

(IIoT) functionality of the integrated system was performed qualitatively, posing no 

impact on real-time performance as maximum jitter recorded stayed <2% of the 10ms 

cycle time as the maximum jitter recorded was 35μs, with 100% of the API responses 

having returned status code 200 (OK) throughout testing. 
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1.0 Introduction 

1.1 Background 

The Fourth Industrial Revolution (IR 4.0) has ushered in an era of 

unprecedented connectivity and automation, driven by advancements in the Industrial 

Internet of Things (IIoT). Traditional automation systems often rely on closed-source 

proprietary software and hardware, which are often unmodular, costly, inflexible, and 

have poor interoperability. However, with the rise of Free and Open Source Software 

(FOSS), there now exists a compelling alternative. FOSS offers the potential for 

reduced costs, increased customization, and greater transparency. This study aims to 

explore the feasibility of using FOSS in commercial-grade automation by developing 

a mock Building Automation System (BAS) using open-source tools and technologies. 

 

1.2 Problem Statement 

Despite the potential benefits of FOSS, its adoption in commercial-grade 

automation remains limited. Key challenges include concerns about reliability, 

security, integration with existing systems, and compliance with common standards. 

This project seeks to address these challenges by evaluating the performance, 

reliability, and security of a mock BAS built entirely with FOSS. The goal is to 

determine whether FOSS can meet the stringent requirements of commercial-grade 

automation and provide a viable alternative to proprietary solutions. 
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1.3 Scope of Work 

This project seeks to establish the degree of feasibility of utilizing a fully open-

source stack in building and deploying a commercial-grade automation system. In this 

report, a distinction is made between commercial-grade and hobbyist-grade (non-

commercial) systems. Commercial-grade automation adheres to industry norms, 

expectations, and standards at a level reasonable enough for commercial customers; 

whether that would be industrial process automation, or building automation. 

Hobbyist-grade automation is distinctive in its use of ultra-low-cost hardware, lower 

power electronics, voltages lower than 24Vdc. In contrast, this project considers a 

setup consisting of hardware targeted at industrial applications to be ‘commercial-

grade’. The scope is delineated more explicitly as below: 

i. This project does not control nor automate any physically-actuated systems, 

as such systems typically require functional safety, which albeit possible 

on the black channel, is currently unimplemented by the EtherCAT 

MainDevice used. 

ii. This project does not control nor automate any systems involved in the 

preservation of life, such as but not limited to smoke alarms, gas leak 

detectors, and fire sprinkler systems. 

iii. All electronics with the exception of the input side of the AC-DC power 

supply, run on 24Vdc or lower, with the maximum current in any part of 

the system limited to 1A, 5A, or 10A by fuses. 

iv. ‘Deployment’ of the system refers to execution of compiled program 

binaries on a Raspberry Pi 5, and the execution of apps/services on the 

development laptop to host the HMI/SCADA, and optionally, web services 

running on remote servers for IIoT functionality. 
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2.0 Objectives 

 This project aims to evaluate the feasibility of a fully open-source based 

commercial-grade automation system by emulating a building automation system. The 

project’s main objectives are summarized below: 

i. To create a working prototype of a building automation system (BAS) 

using a fully Free and Open Source (FOSS) stack to demonstrate feasibility 

of using open source tools. 

ii. To demonstrate HMI/SCADA functionality and IIoT integration (e.g. 

alarms and events relayed by RESTful APIs for client mobile apps). 

iii. To quantify deployment reliability via metrics such as determinism, jitter, 

latency, uptime, resource utilization and CPU temperature. 

iv. To evaluate the extent of possible future expansion into more critical 

applications, such as (but not limited to) process automation involving 

motion controls; functional safety; high throughput, low-latency data 

acquisition, and deterministic plant-level orchestration. 
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3.0 Literature Review 

Following latest guidelines from Item 1.5 of the EtherCAT Technologi Group 

FAQ (2025) all instances henceforth of MainDevice and SubDevice respectively have 

the same meaning as ‘Master’ and ‘Slave’ in pre-existing materials. 

 

3.1 Real-Time Computing 

 “Real-time” is used in many different colloquial senses, and is often conflated 

with “live”. Real-time is defined by the amount of guarantee possible for meeting the 

deadlines of specific tasks, backed by the degree to which system behavior is 

deterministic (Rostedt, 2016). The phrase is further subdivided into three 

classifications: hard, firm, and soft (Brown & Martin, 2010; VanderLeest, 2022; Intel 

Corporation, 2022). Failure to accomplish a task within a specified deadline can mean 

the loss of life or great financial loss. 

A major example of hard real-time is in aerospace systems, where precious 

cargo or data may be lost if certain critical tasks could not be accomplished within the 

deadline allocated. Additionally, a major differentiator between hard real-time and 

firm or soft real-time is the formal verification required in order to obtain mathematical 

certainty, where system behavior is modelled mathematically hence formally verified. 

Such formal verification allows for quantifiable metrics to be established (e.g., known 

values for latency bounds etc.) (Feo-Arenis et al., 2016). Firm real-time sits between 

hard and soft real-time, where there is a reasonable expectation of failure that does not 

have a particularly catastrophic result. Missed deadlines in a firm real-time system 

does not constitute total unrecoverable failure. On the other hand, soft real-time 

systems can tolerate missed deadlines which although undesirable, pose no risk or 

threat to safety (Utande, 2025). 

 Real-time performance can be characterized by latency and jitter. The exact 

definition of these quantities depend on context, but latency and jitter are generally 

defined as follows. In the context of the Linux scheduler, latency can be defined as the 

time elapsed after the invocation of a task until the beginning of the task execution. 

(Huang & Yang, 2017). Hence a general definition of latency may be construed as the 

amount of time elapsed between when an event is ordered to happen until the time that 
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the event actually starts to happen. The ‘event’ being measured varies by context, 

hence, the exact quantity being measured also varies. 

 Jitter may be defined as the deviation of the cycle time for a task. In the context 

of a PLC cyclic task, it may be further divided into ‘periodic jitter’ and ‘release jitter’. 

Following the definitions set in Definitions of Jitter and Latency (CODESYS Group, 

2024), periodic jitter is simply how much the actual cycle time deviates from the 

desired cycle time. Whereas release jitter is the difference between the largest and 

smallest recorded latency that occurred within the measurement duration. 

 

3.2 Soft, Virtual, and Hard PLCs 

 The terms “soft PLC”, “virtual PLC”, and “hard PLC” are being increasingly 

used in reference to paradigm shifts in how PLCs are implemented. Before the advent 

of PLCs, system controls were implemented with electromechanical relay logic 

(Wayand, 2020). The first PLC was invented in 1969 by Bedford Associates in 

response to a proposals request from General Motors, to replace relay-based control 

systems in the GM Hydramatic automatic transmission with electronic controls. The 

idea itself was first envisaged by Dick Morley. (Dunn, 2009). Traditional ‘hard’ PLCs 

are relatively architecturally simple microcontroller-based systems built to withstand 

industrial environments. PLC programs in traditional PLCs sit closer to metal with a 

simpler abstraction layer to interface with hardware. 

 
 

Figure 3.2-1(a): Example 

implementation architecture of 

a virtual PLC. Adapted from Perez et al. 

 

Figure 3.2-1(b): Beckhoff TwinCAT 

Runtime Architecture. Adapted from 

Beckhoff Automation (n.d.-e). 
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‘Soft’ PLCs on the other hand are characterized by a more complex architecture, 

with more layers of abstractions away from bare metal and relies on an operating 

system to interface with the hardware. Hence, the programmable logic itself is 

implemented purely as software hosted by an operating system. Perez et al. (2022) 

distinguishes soft PLCs and virtual PLCs respectively as a software that emulates a 

standard PLC for the former, and a soft PLC running in a virtual machine for the latter. 

“PC-based” controllers fall within the definition of soft PLCs, first pioneered by 

Beckhoff in 1986 (Beckhoff Automation, 2021). 

Notable vendors of PC-based controllers are Beckhoff, B&R, and Rexroth. 

These vendors offer their own host hardware for their soft PLC runtimes. However, 

one vendor, CODESYS, exclusively focuses on the soft PLC runtime software itself 

and does not make any specific host hardware. CODESYS runtimes can run on any 

host hardware that runs Windows, Linux, or VxWorks (CODESYS Group, n.d.-b). 

 Since soft PLCs are essentially full computers, the low-level software and 

firmware are specialized to guarantee real-time. Real-time is defined by known 

bounded worst-case latencies which guarantee that control tasks can be executed 

whenever necessary in order to meet deadlines. This can only be satisfied by some 

means of system resource control to ensure timely execution of real-time control tasks. 

The approach taken by TwinCAT on Windows NT is to have a separate kernel 

extension that can safely override the behavior of the Windows NT kernel so that real-

time tasks always have access to system resources. 

Despite itself being not real-time capable, the hybrid architecture of Windows 

NT allows for this setup, thus enabling real-time (Beckhoff Automation, n.d.-a). The 

now-discontinued Windows CE on the other hand, is a preemptible kernel, and is 

readily soft real-time capable. Real-time applications on Windows CE utilize kernel 

preemption in order to grant access to system resources for real-time tasks (Microsoft, 

2006). This is a similar approach with Linux PREEMPT_RT. Being a monolithic 

kernel, Linux strictly segregates user-space and kernel-space processes. 

In order to support real-time, the kernel must be built with PREEMPT_RT and enabled. 

This allows high-priority user-space processes to preempt the kernel itself, 

guaranteeing access to system resources for real-time tasks (McKenney, 2005; Brown 

& Martin, 2010; Madden, 2019; Understanding Linux Real-Time, 2025). 
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 ‘Virtual’ PLCs take the abstraction in a radical direction by completely 

liberating the control logic from a dedicated host hardware that is traditionally installed 

at specific parts of the production line. Instead, the PLC itself is merely software 

running in a container or a virtual machine, whose host hardware may be significantly 

further from the physical processes it controls. Although radical, there are pioneering 

examples of the architecture being deployed in production. For example, in a recent 

project by Audi, the TÜV-certified SIMATIC S7-1500V virtual PLC was used to 

control the axle assembly line for the Audi e-tron GT in Audi’s Böllinger Höfe factory 

in Neckarsulm (Siemens, n.d.). 

 

3.3 Real-Time Communications 

 Real-time communications is achieved via EtherCAT, a summation-frame 

fieldbus protocol based on Ethernet specially designed for low latency and jitter, which 

are required in precise, time-sensitive applications (Wu & Xie, 2019). Originally 

developed by Beckhoff, the protocol has been standardized by the International 

Electrotechnical Commission (IEC) as IEC 61158. The specification is now 

maintained by the ETG as an open technology (EtherCAT Technology Group FAQ, 

2025). 

Figure 3.3-1: Visualization of on-the-fly processing. Adapted from Broling (2007). 

Time determinism is achieved by utilizing FPGA/ASICs for on-the-fly processing of 

telegrams. As a telegram passes through a SubDevice, the ESC inserts input data into 

 
SubDevice 1 has input data to give and 

an empty output data buffer 

 
SubDevice 1 retrieves output data and 

places its input data into the frame 

 
Repeat for SubDevice 2 and subsequent SubDevices. 



8 

the telegram, and retrieves (if any) output data from the telegram. The on-the-fly 

processing allows the entire network to be addressed with just a single frame. An 

EtherCAT SubDevice is governed by the EtherCAT State Machine. This state machine 

is composed of the states Init (INIT), Pre-Operational (PRE-OP), Safe-Operational 

(SAFE-OP), Operational (OP), and Boot (BOOT) (Beckhoff Automation, n.d.-f). 

 

Figure 3.3-2: EtherCAT State Machine. Adapted from Beckhoff Automation (n.d.-f). 

As the protocol relies on frame summation, the real-time performance of any 

specific network is characterized by the slowest SubDevice. Each SubDevice incurs 

additional processing delays, and this necessitates the use of FPGA/ASICs to 

implement the ESC for hard real-time guarantees and minimum latencies. Data is 

transmitted in two forms in EtherCAT: as PDOs (Process Data Objects) or SDOs 

(Service Data Objects). PDOs are used to transmit cyclic process data during the OP 

state, whereas SDOs are often used to parameterize a SubDevice during acyclic 

communication (during PRE-OP). The most common way SubDevices are 

parameterized is via CoE (CANOpen over EtherCAT) SDOs, among other protocols. 

The address space of an EtherCAT network is 16 bits. EtherCAT also supports 

redundant cabling (ring topology) and cable breakage detection, though these features 

are optional and are defined in the specifications as feature packs (FP). In any 

EtherCAT network, there exists only one MainDevice, which handles SubDevice 

management, distributed clocking, and inter-SubDevice communication (which 

enables FSoE) among other functions. The bulk of the processing occurs within each 

SubDevice themselves, thus the MainDevice itself can be simply implemented in 

software so long as an Ethernet NIC exists (“Industrial Communication Networks - 

Fieldbus Specifications - Part 1”, 2023). 
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3.4 Preemptive Real-Time Multitasking 

By default, the Linux kernel employs preemptive multitasking, where tasks are 

preemptible. Preemption is the interruption of the execution of a task by a scheduler, 

based on the scheduling policy. This allows system resources to be distributed 

according to the priority of tasks and whether or not they are CPU-bound (mainly 

requires CPU resources) or I/O-bound (blocks on waiting for I/O) (Baeldung, 2023). 

PREEMPT_RT enables the application of preemptive multitasking in a real-time 

setting. However, the implementation is far from trivial. 

 When a low-priority task holds a lock on a resource that is needed by a high-

priority task, a problem known as priority inversion may occur. When a medium-

priority task preempts the low-priority task and holds the lock on the resource needed 

by the high-priority task, the high-priority task is starved and is effectively being 

preempted by lower-priority tasks, despite having the higher priority. This is solved in 

the Linux kernel using priority inheritance. The low-priority task is temporarily 

boosted to the same level as the high-priority task (thus inheriting the priority of the 

high-priority task) so that when it yields, the original high-priority task is able to 

immediately acquire the lock to the shared resource (RT-mutex Subsystem, n.d.). 

 

3.5 Memory Safety 

 

Figure 3.5-1: Illustration of the Heartbleed bug (CVE-2014-0160) caused by lack of 

input sanitization and bounds-checking. By Patrick87 (2014). 

Many popular memory-safe languages achieve memory safety by using garbage 

collection (Heller, 2023). However, the presence of a garbage collector is undesirable 
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in many circumstances, such as real-time applications. Garbage collection is inherently 

indeterministic, and the programmer has limited control over its behavior. 

Programming languages that offer manual memory management exposes complete 

control over memory to the programmer. This is needed in applications that require 

deterministic guarantees, such as PLCs, communications, and embedded devices 

(Henriksson, 1998). 

Traditionally, programming languages with manual memory management are 

often vulnerable to undefined behavior (UB). UB is simply program constructs that 

are left undefined by the programming language specification. Examples of UB (at 

least in C) are division by zero, oversized shifts, integer overflows, null pointer 

dereference, and reading uninitialized values (Wang et al., 2012). ISO/IEC 9899:2024 

defines UB in C as “behavior, upon use of a nonportable or erroneous program 

construct or of erroneous data, for which this International Standard imposes no 

requirements”. Thus, UB in a program can result in the program doing absolutely 

anything, with no regards to whether this is expected or not by the programmer. 

UB can manifest as a security vulnerability, such as in Heartbleed (CVE-2014-

0160) as illustrated in Figure 3.5-1. In Heartbleed, the server program does not sanitize 

inputs from the client, and accesses data in memory beyond the correct bounds. Such 

data accesses allow malicious actors to arbitrarily read data stored in the server, which 

may be sensitive and confidential (Durumeric et al., 2014). Memory safety violations 

affect real-world products used daily. Microsoft and The Chromium Projects each have 

reported that memory safety related bugs constitute 70% of discovered security 

vulnerabilities in their respective products (Microsoft, 2019; The Chromium Projects, 

n.d.). 

Rust is a notable exception, as it is currently the only mainstream programming 

language that is both memory safe while lacking a garbage collector. Rust code is ‘safe’ 

by default (UB is made impossible due to static checks by the compiler), but is still 

possible in regions marked with the unsafe keyword. However, Rust lacks an official 

specification such as ISO/IEC9899 for C. Hence, the claim that UB is completely 

eliminated in safe Rust is not airtight. Despite that, the static checks enforced by the 

compiler by default eliminates entire classes of memory bugs that are commonly and 

trivially introduced when writing in C (Ballo, Ballo, & James, 2022).  
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1See Milewski (2015) for a discussion on category theory and algebraic data types. 

4.0 Methodology 

Throughout the development of the project, the methodology most strongly 

adheres to the iterative and modular method, where the system is first broken up into 

simpler, smaller pieces that are eventually integrated. The process of iteration involves 

codebase refactoring, removal of redundancies, and eventually where necessary, 

growing in the quantity, interdependency, and complexity of features. 

 

4.1 Methods and Tools 

4.1.1 Programming Languages 

 The main programming language used is Rust, a high-performance, memory-

safe programming language that enforces rigorous compile-time guarantees via a static 

type system and borrow checking, without the runtime overhead of a garbage collector. 

OOP in Rust is achieved via composition as opposed to inheritance with algebraic data 

types (specifically ‘algebraic’ to the extent that the type system forms a semiring up to 

isomorphism and inhabitation1). 

 JavaScript is used for additional UI functionality within the FUXA HMI 

platform. Python is used for performance benchmarking analysis, as well as a gateway 

for IIoT functionality. Zig and C are used to implement a Telegram bot server. Bash 

scripting is used in the development and deployment environment assisting in 

deploying and running the compiled binaries. Dart is used to create the mobile client 

app, utilizing the Flutter UI framework. Among the programming languages used, C, 

Rust, and Zig, are not garbage-collected. 

 

4.1.2 Graphics 

 Inkscape, an open source vector graphics editor was used to design the concept 

UI of the mobile IIoT client, in addition to graphical assets used for the project 

documentation. Draw.io was used to create the topology, architecture, and the 

EnOcean state machine diagram. 
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4.2 Project Activities 

This section describes the activities undertaken to realize the project objectives. 

 

4.2.1 Hardware Setup 

4.2.1(a) Electrical Connections 

Wiring was done closely referencing datasheets provided by manufacturers. 

Additionally, all metal components were grounded to earth with oversized gauge wires. 

To avoid ground loops, there is only a single path to earth. For connection with the I/O 

components, ferrules were used. The IRIV IOC is not grounded as it does not have a 

dedicated earthing terminal. Additionally, at the time of writing, Cytron claims in its 

datasheet that the IRIV IOC does not require a connection to protective earth. 

Per Beckhoff recommendations, the EK1100 and BK1120 couplers each are 

wired with 10A and 1A fuses. The 10A fuses protect the E-bus and K-bus terminal 

power contacts, and the 1A fuses protect the power supply for the EK1100 and 

BK1120 couplers themselves. The Raspberry Pi 5 was powered separately by a 

dedicated, 5A-fused AC-DC 5V UK power supply via USB-C. The Phoenix Contact 

FL SFNB 5TX network switch connects to earth via its metal DIN rail clip. While no 

effort is spent on creating a fully standards-compliant test bench, UL 508A 

recommends that all metal parts are earthed, and this is heeded wherever possible. The 

AC-DC power supply is fed via clip-on terminal blocks, and the hot (live) wire is 

connected through a breaker. This is especially important so that the system is truly 

de-energized and does not float live while “off”. 

An alternative consumer-grade network switch, the TP-LINK LS1005 was also 

used, as the industrial-grade Phoenix Contact switch was on ephemeral loan. The 

LS1005 runs on 5V DC from the supplied, 5A-fused AC wall plug. Since the LS1005 

is not earthed, the RJ45 cables float at 0Vdc (relative to 0Vdc of the power supply) for 

the IRIV IOC, and approximately –0.02V relative to earth for the RJ45 segment 

between the LS1005 and the UGREEN CR111 USB-A NIC. There should be no risk 

of ground loops in this configuration as this segment of the network is floating and is 

not earthed. The IRIV IOC is powered directly from the 24Vdc rail through a 10A fuse, 

with built-in surge and overcurrent protection.  
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4.2.1(b) Network Topology 

Figure 4.2.1(b)-1: Test bench network topology.  

In Figure 4.2.1(b)-1,  I/O terminal connections may arbitrarily be changed, but their 

coupler-relative positions are fixed. The EK1100 must be the first SubDevice in the 

EtherCAT network. The blue line only serves to clarify the path of Modbus/TCP 

packets though it piggybacks on the same Mixed IP network. 

All wired communication is done via twisted pair Ethernet, with both ends 

terminated with RJ45. For programming of the IRIV IOC, the manufacturer-provided 

CircuitPython firmware is flashed via its USB-C port. Different NICs are used to 

transport different protocols and data. EtherCAT data is transported in its own 

dedicated network, whereas SCADA, Modbus, SSH, and other non-real-time data are 

transported via a separate USB-A NIC. 
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4.2.1(c) Networking Tools 

 Configuration and setup of the network involved extensive use of command 

line networking tools to verify and troubleshoot connections. Namely, the tools arp-

scan, nmcli, ping in particular were absolutely critical. 

 

4.2.1(d) Deployment Interfacing 

The Raspberry Pi 5 is used in a headless (without dedicated display, mouse, 

and keyboard) configuration, and was likewise set up in the same manner. The 

Raspberry Pi OS image was flashed onto a 32GB microSD card using the Raspberry 

Pi Imager tool on the development laptop. Interfacing with the Pi is done via SSH, and 

files are transferred via SCP, both SSH and SCP have been set up to use certificate-

based authentication, with password login disabled. The GUI service is disabled using 

raspi-config to dedicate maximum resources to the soft PLC runtime. Cross-compiled 

binaries are transferred to the Pi over SCP. 

 

4.2.2 Development Toolchain Setup 

4.2.2(a) Operating Systems 

 The only operating systems used for development are Pop!_OS 22.04 LTS and 

Raspberry Pi OS (Debian 12 Bookworm). The former is installed on the development 

laptop, while the latter on the Raspberry Pi 5 for deployment purposes. Both operating 

systems are Debian-based, with Pop!_OS in particular being based on Ubuntu. 

 The packaged kernel on the official Raspberry Pi OS image was not real-time 

capable, despite being version 6.12. Hence, the Linux kernel version 6.12 on the 

Raspberry Pi OS was recompiled with the PREEMPT_RT patch, to enable preemptive 

real-time multitasking, a critical requirement for soft PLCs. Additionally, in the spirit 

of open source, Windows is used only to prepare this report to comply with the 

academic convention of using Microsoft Word. 
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4.2.2(b) Integrated Development Environment (IDE) 

 Visual Studio Code (VSCode) was initially used early on in the project, but 

due to language server incompatibility and performance overhead, VSCodium is used 

instead. VSCodium is a community-distributed version of VSCode that is compiled 

solely from the open-source codebase, without additional closed-source add-ons from 

Microsoft. Cargo is also installed to handle dependencies, linkers, targets, and to 

conveniently interact with the Rust compiler. 

The language server implementation for Rust, rust-analyzer, is installed as an 

extension, providing syntax highlighting, type checking, and documentation popups. 

Python is used with venv to provide reproducible virtual environments, eliminating 

issues with dependency management and multiple Python installation directories. venv 

is integrated with the VSCodium IDE, though venv itself is a runtime environment 

independent of any IDE. As for development of the mobile client app, the Dart and 

Flutter extensions were installed for ease of building and flashing the .apk to an 

Android smartphone, debugging, packaging, managing dependencies, syntax 

highlighting and refactoring. 

Support for Zig in VSCodium was enabled by installing the Zig language 

extension, which also comes with the ZLS, the language server implementation for 

Zig. As is the case with rust-analyzer, ZLS provides syntax highlighting, type 

checking, and popups. However, unlike rust-analyzer, ZLS does not show all compiler 

errors. On save, rust-analyzer highlights all compiler errors. 

 

4.2.2(c) Source Control 

 Source control is achieved using Git, the most ubiquitous, open-source, 

industry-leading distributed source control system. All source files for the core runtime 

are stored in a monorepo architecture, using GitHub to host the remote repository. Core 

Git features such as branches, merges, reflog, rebase, were all used at least once 

throughout development to assist with structured tracking of the source code. The 

source code for minor additional non-real-time applications (mobile app client, PLC 

OPC UA-Supabase gateway) are stored in separate repositories. 
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4.2.2(d) Cross-Compilation 

 The ARM toolchain is used to cross-compile for the Raspberry Pi 5’s ARMv7 

BCM2712 SoC. Initially during development, cross compilation was done directly on 

the host environment, i.e. without a container. However, with the goal of ensuring no 

undefined behavior and to increase performance, inter-process communication 

between the PLC and HMI/SCADA was reimplemented using iceoryx2, whose clang 

build scripts could not resolve the required ARM GNU C libraries. 

Hence, the most convenient and reliable way to perform cross compilation was 

to use cross, a wrapper for Cargo with Docker as the backend. The containerized 

approach streamlines dependency management by separating the host environment 

and emulating the target more closely, thereby eliminating “it works on my PC”-type 

problems. In implementing the Telegram bot in Zig, however, CMake was 

unfortunately unavoidable due to a critical dependency, iceoryx2, not having official 

Zig bindings. Hence, its C bindings were used instead. 

As the Telegram bot consumes PLC data via inter-process communication 

(using iceoryx2), the C bindings for iceoryx2 still need to be cross-compiled using 

CMake, while the resulting Zig application was cross-compiled with Zig itself. Due to 

the glibc shared library dependency, the ARM compiler toolchain was version-

matched with the installed glibc version on the Raspberry Pi.  
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4.2.3 System Architecture – Hardware and Software Stack 

 

Figure 4.2.3-1: System software and hardware architecture. Parts marked with 

Ferris the Crab are written in Rust. 

Architectural design decisions are motivated by ease of interpretability and 

experimentation. Major components of the software stack are not production-ready, 

though they may have been used in production. Maintainability and documentation 

quality is prioritized over performance in non-critical components. The control loop is 

implemented in Rust as it is the most critical part of the code requiring performance 

and deterministic behavior, whereas the non-critical IIoT gateway that links between 

the remote database and the OPC UA server is a simple Python script. Additional HMI 
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functionality is achieved using scripts written in JavaScript, while the mobile app 

client is fully written in Dart using the Flutter framework. 

 Not all architectural design decisions are motivated solely by technicalities; 

ethercrab was chosen as the EtherCAT MainDevice because of a small, tightly-knit 

group of about four dozen users that regularly and casually interact with the developer. 

The soft ‘PLC’ is hence built around the MainDevice, in Rust. The memory safety and 

fearless concurrency advantages that come with using Rust were an unintended bonus. 

In addition to its active status, it is also a performant user-space application, 

simplifying deployment and troubleshooting. 

 However, this specific decision does not shun other MainDevice 

implementations. GatorCAT, a Zig implementation of the EtherCAT MainDevice was 

heavily used as a close reference in understanding the EtherCAT standard itself, 

despite not being an inseparable dependency of the soft ‘PLC’. GatorCAT’s command 

line tool and use of Zenoh to publish/subscribe process data as topics makes it highly 

modular and architecturally elegant, with minimal overhead. Despite that, Zig is an 

unproven language still under development, and is far from version 1.0; though the 

language does have an active and wholesomely helpful community of users. Zig was 

used to implement the Telegram bot, using the C FFI bindings for iceoryx2 to subscribe 

to data published by the PLC. 

 A standard feature of most modern PLCs is online variable read/writes. This is 

relatively straightforward to implement, as any standard debugger can be used to 

change variable values of a running process. However, ensuring that such changes are 

done safely is far from a trivial task. In addition to manipulation of variables at runtime, 

PLCs require online code changes (also known as hot swapping or hot reloading). That 

is, recompilation of parts of the control logic and swapping the new binary while the 

PLC program is running. This feature is difficult at face value, and even harder to 

implement safely and correctly. 

 Such features were not implemented due to the sheer complexity. A feature-

complete runtime will require additional upstream dependencies. Additionally, there 

are many ways UB can manifest in such a system, which can have negative real-world 

consequences. such work is left for future exploration and are hence not within the 

scope of this project.  
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4.2.4 Implementation Details 

4.2.4(a) Concurrency and Multithreading 

tokio and smol are used for asynchronous programming. The EtherCAT 

MainDevice, ethercrab, performs best using a lightweight smol runtime, whereas tokio 

is used in the OPC UA server and the Modbus/TCP processes. Transport of real-time 

EtherCAT process data out of the sensitive hot path and into the OPC UA server 

leveraged inter-process communications, implemented with iceoryx2. The OPC UA 

server is a blocking await, so the IPC polling task is a separate thread. 

Thread-safe access of shared data is implemented using RwLocks and Mutexes. 

These locks utilize RAII in order to release locks to shared data; however, they do not 

provide any runtime or static warnings for deadlocks, but a deadlock is immediately 

noticeable as the EtherCAT couplers will immediately go into PRE-OP due to timeout. 

 

4.2.4(b) Pre-Faulting 

Page fault counts increases within the first few seconds of program startup and 

remains constant afterwards. During program initialization at PRE-OP, the process 

image buffer of the EtherCAT network is configured. This buffer is allocated on the 

heap using Vec<T, A>, which is dynamically-expanding. This effectively (validly) 

faults the allocated pages needed. Since no additional shrinking/expansion of heap-

allocated data structures occur past PRE-OP, the program has access to all of the heap 

memory it needs; hence page fault counts remain constant. For real-time applications, 

the added overhead from page faults can negatively affect real-time performance. 

Hence, allocated memory must be pre-faulted before critical sections. 

One caveat of this is minor page faults due to IPC. Since the PLC process is 

also a subscriber to inter-process data, when publisher processes get initialized, a small 

number (usually 3) of minor page faults are generated by the PLC process. This is 

negligible and will not adversely effect real-time performance, as long as publisher 

processes to the PLC process do not get frequently spawned and killed. The following 

command can be used to monitor the minor and major page fault counts for a specific 

process: 

$ ps -o min_flt,maj_flt [PID] 
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4.2.4(c) EnOcean Driver 

 

Figure 4.2.4(c)-1: KL6583 EnOcean State Machine. 

Constructed based on Documentation | EN KL6581 and KL6583 (2023) and 

EnOcean Equipment Profiles (2017). 

The KL6583 and KL6581 form the transceiver unit that receives input data from the 

PTM200 switch. EnOcean is a batteryless, wireless protocol. The EnOcean driver was 

written as part of the PLC application, based on the datasheet of the Beckhoff 

KL6581/6583 (Documentation | EN KL6581 and KL6583, 2023) and the EnOcean 

Equipment Profiles document, version 2.6.7 published by the EnOcean Alliance 

(EnOcean Equipment Profiles, 2017). 

The implementation is a simple state machine, though some trial and error was 

necessary as the KL6581/6583 datasheet contained confusing language and severe 

typos. In addition, example TwinCAT programs provided by Beckhoff depend on 

closed-source libraries, providing little insight to implementation. 
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4.2.4(d) IIoT Backend 

 Supabase is an open-source development platform for storage backends. Every 

project is a Postgres database, and the API is implemented using PostgREST. It can be 

self-hosted, hosted on a third-party cloud provider, or first-party hosted. For this 

project, the first-party hosted solution is used with the Free tier. The Free tier offers 

unlimited API requests, 50,000 monthly active users, a 500MB database size, 5GB 

bandwidth and 1GB file storage. For the purposes of this project, the Free tier is already 

more than enough. However, after seven days of inactivity, the Supabase project is 

automatically paused, and the number of active projects on Free tier is limited to two. 

 The Postgres tables used for the project are protected using Row Level Security 

(RLS) to prevent unauthorized read/writes. The source of truth at the plant level is the 

OPC UA server hosted on the PLC hardware (Raspberry Pi 5 for this project). The 

PLC is responsible for transforming fieldbus data into OPC UA tags, which are then 

used by HMI and SCADA. The Supabase database itself acts as a tag historian. 

 For urgent alerts, the PLC also hosts a Telegram bot. Predefined alert messages 

in the PLC program are communicated via IPC with the Telegram bot, bypassing the 

OPC UA server. It is assumed that IPC is more reliable than an OPC UA client 

connection, hence, critical alerts are triggered in this manner. 

 

4.2.4(e) IIoT Frontend 

 The UI/UX layout of the mobile client app was initially designed in Inkscape. 

UI elements such as buttons and icons come from the Material design suite, with the 

exception of the typeface, Work Sans, which was sourced from Google Fonts. 

fl_charts was used to render line graphs and icons_launcher was used to handle app 

icon generation and configuration. 

 The mobile client app implements three features: Tag View, Chart View, and 

Admiral. Tag View simply shows a scrollable sample of the latest records in the 

database. Chart View simply plots the latest analog input data stored in the database. 

Admiral is a feature that allows the user to send predefined commands to the PLC 

remotely, however such commands are only executed if the remote command interlock 

is satisfied. In addition to the mobile client app, any Telegram client app acts as the 

frontend for the Telegram bot hosted on the PLC.  
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4.2.4(f) Debugging Methodology 

 A major bug relating to the EtherCAT MainDevice used was initially 

sidestepped. The bug involved an out of bounds array access to an array structure 

storing SyncManager types for a particular SubDevice; the BK1120 K-bus coupler. 

Due to the out of bounds access, the runtime panic prevented the ESM of the BK1120 

to transition from PRE-OP to SAFE-OP. The bug was sidestepped by forcing an index 

check and breaking a specific loop early. The coupler was connected to a Windows 

laptop running TwinCAT 3 and the startup CoE parameters were inspected. 

Other users of a separate MainDevice, the IgH EtherCAT Master reported 

previously ESM state transition failures due to a firmware bug on certain units. 

Ultimately, it was finally discovered that the MainDevice read two additional Sync 

Managers that were completely undocumented. This was cross-referenced with the 

BK1120 datasheet itself as well as the TwinCAT ESI file. The datasheet also did not 

document specific CoE parameters necessary for transition into SAFE-OP and OP. 

The bug was fixed by removing discovered Sync Managers that did not correspond to 

SyncManager types specified in the EtherCAT standard.  
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4.2.5 Test Methodology 

4.2.5(a) Real-Time Performance Testing 

All CPU cores are pinned to ‘performance’ to disable frequency scheduling. 

The command-line tools used for testing are cyclictest and stress-ng. The latter is used 

to add stress to the system while the soft PLC is running. cyclictest is used to gauge 

the baseline real-time performance of the system by measuring thread latencies. This 

is particularly useful to quickly verify system real-time performance optimizations. In 

addition, stress-ng may be used with taskset in order to specifically stress a specific 

CPU core. During test runs, htop is also used to monitor system resource utilization. 

The following cyclictest command was used to specify exact test run parameters: 

$ sudo cyclictest -D 10m -i 200u --default-system -a 0-3 -t 8 --

mainaffinity 2-3 -p 95 --policy fifo --mlockall --priospread 

Since CPU cores 2 and 3 were isolated for executing real-time tasks, stress-ng was run 

on the isolated CPU cores using taskset: 

$ taskset -c 2 stress-ng --cpu 8 --cpu-method fft 

$ taskset -c 3 stress-ng --cpu 8 --cpu-method fft 

stress-ng was also used to stress virtual memory and disk I/O as below: 

$ stress-ng --vm 8 --vm-bytes 900M --timeout 20m --iomix 8 

 

4.2.5(b) Jitter Distribution Analysis 

Real-time performance relies on the maximum jitter recorded. However, it is 

still useful to analyze the distribution of recorded jitter values. These test runs are short, 

ranging from 5-20 minutes, hence they cannot be used to gauge the long-term real-

time performance of the PLC. The PLC measures the jitter between each cycle, 

appends it to a Vec<T, A> type that is then written out to a .csv after a specified amount 

of time. The .csv is then copied over into the development laptop where it is analyzed 

with Python to compute the mean, standard deviation, as well as a histogram plot. 

 

  



24 

4.2.5(c) Integration Testing Methodology 

 In order to test the fully integrated system as a whole, the mock BAS 

application is created to demonstrate the maximum extent of functionality for each part 

of the system, as well as their interactions. This was conducted with the Pi 5 connected 

to the internet over WiFi. The PLC logic is programmed to conditionally trigger events 

involving full-duplex transmission and processing of data between all nodes. The 

nodes in the integrated system are as follows: 

Node Function Actual Host/Platform 

PLC Run EtherCAT MainDevice, 

Modbus/TCP client, and control logic 

Raspberry Pi 5B 

HMI Host FUXA UI to visualize and 

read/write I/O data 

Acer Aspire A315-57G 

Remote 

Database 

Store fieldbus I/O history and 

commands from Mobile Client 

Supabase on AWS 

t4g.nano in Singapore 

Mobile Client Mobile HMI, send remote commands Samsung SM-A528B/DS 

Table 4.2.5(c)-1: Nodes in Integrated System. 

 

Figure 4.2.5(c)-1: Visualization of Nodes in the Integrated System. 
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In Figure 4.2.5(c)-1, “LAN” refers to the local TCP/IP network, which 

excludes the EtherCAT fieldbus, but not Modbus/TCP. However, data from 

Modbus/TCP is not directly accessed by nodes other than the PLC. The source of truth 

at the floor level is the OPC UA server, which the PLC hosts. 

The integration test is fully qualitative. As the overall integrated system is not 

fully real-time (with the exception of the PLC logic and the EtherCAT fieldbus), 

temporal measurements were not measured as the WAN and LAN are inherently non-

deterministic (all data transmitted over TCP, internet connection provided through 

WiFi, etc.), hence are unbounded. Latency between nodes in the integrated system also 

depends on the specific internet connection, service provider, time of day, etc. 

Therefore, no useful interpretation of temporal measurements can be made with 

respect to the integrated system. 

 

4.2.5(d) Mock BAS Control Narrative 

The mock BAS controls a fictional building composed of three arbitrary areas, 

presumably within 100m of each other. One can imagine them to be bedrooms, 

meeting rooms, garages, or a yard. Nevertheless, the effect of inputs on outputs are not 

limited based on the ‘area’ where the input device is located. The three arbitrary areas 

are served by three separate I/O devices: The E-bus terminals (EK1100 coupler cards); 

the K-bus terminals (BK1120 coupler cards), and the IRIV IO Controller. All fieldbus 

communication occurs over twisted pair Ethernet. 

Input 

Device 

Type Channels Area 

Served 

Active 

Level 

Protocol 

KL1889 Digital Channel 6 1 LOW EtherCAT 

KL6581 

+KL6583 

Digital (or Analog, 

data scheme is 

arbitrary) 

Rocker A 

Rocker B 

All - 

EL1889 Digital Channel 1-2 2 LOW 

EL3024 Analog, 4-20mA Channel 1 2 - 

IRIV IO Digital+Analog (0-

10V or 4-20mA) 

AN0 

DI0 

3 HIGH Modbus 

/TCP 

Table 4.2.5(d)-1: Mock BAS fieldbus inputs. 
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The KL6581+KL6583 combo constitutes the EnOcean transceiver unit that receives 

digital data wirelessly from the batteryless PTM200 transmitter. Since the transceiver 

receives EnOcean datagrams and exposes the raw datagram in its process image, the 

form of the data (whether it is digital/analog) depends on the transmitter. In this case, 

the PTM200 is a simple digital switch. 

Output 

Device 

Type Channels Area 

Served 

Active Level Protocol 

EL2889 Digital Channels 1-16 1 LOW EtherCAT 

KL2889 Digital Channels 1-16 2 

Table 4.2.5(d)-2: Mock BAS fieldbus outputs. 

Transducer Type Type 

PTM200 EnOcean Pushbutton 

Transmitter Module 

Input 

Limit Switch Switch 

Selector Switch Switch 

E-stop Switch E-stop 

Rotronic Hygroflex HF135-

SB1XDXXX 

Humidity and Temperature 

Sensor 

Q-Light ST45B-3-24-RAG Tower Lights Output 

Table 4.2.5(d)-3: Mock BAS transducers. 

Alarms and logs reside on the HMI/SCADA running on a separate computer. The PLC 

can also send notifications via a Telegram bot. There are two HMIs. The local HMI 

reads and writes tag values to/from the PLC via OPC UA over the LAN. The remote 

HMI is a mobile app reads and writes tag values to/from the PLC via a remote database. 

The remote HMI writes tag values using its ‘Admiral’ feature.  
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The following flow charts describe the PLC logic. 

 

Figure 4.2.5(d)-1: EnOcean Routine in PLC program. 

The control logic starts with the EnOcean routine, which handles inputs from the 

PTM200 and controls digital outputs and program flow via the blinkerlamps variable, 

which if TRUE, will blink all channels of the KL2889. 

 

  



28 

 

Figure 4.2.5(d)-2: HMI Commands Handler routine in PLC program. 

The HMI may also control the same outputs controlled by the PTM200, however, 

priority is given to the PTM200 as its input may override that of the HMI. 
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Figure 4.2.5(d)-3: Blinkerlamps routine in PLC program. 

This routine only executes if the blinkerlamps variable is set, which occurs in the 

EnOcean routine and HMI Commands Handler routine as described in Figure 4.2.5(d)-

1 and Figure 4.2.5(d)-2 respectively. 
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Figure 4.2.5(d)-4: Telegram Notification Update routine in PLC program. 

The purpose of this routine is to demonstrate the Telegram bot. A direct message link 

to an appointed person in charge may be used to notify emergencies where urgent 

intervention is necessary. 
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Figure 4.2.5(d)-5: Remote Commands 

Handler routine in PLC program. 

Figure 4.2.5(d)-6: Temperature Range 

Indicator routine in PLC program. 

The Remote Commands Handler routine will only execute if Channel 1 of the EL1889 

is toggled ON, functioning as an interlock. However in this case, since there is only a 

single action step conditioned on the ‘interlock’, it is effectively a simple permissive. 
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4.3 Gantt Chart and Milestones 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3-1: Project Gantt Chart and Milestones. 

Milestones 

Milestone Completed in SIP Week 

Design system architecture 4 

Low-level programming 7 

Frontend programming 11 

Integration test 12 

Table 4.3-1: Project Milestones and Week of Completion. 
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5.0 Results and Discussion 

Testing of the system focused predominantly on real-time performance, being 

that the core functionality implemented is an EtherCAT-based control loop. Despite 

targeting a building automation system as a mock application example, at the very 

minimum, the system should have reasonable soft real-time capability, backed up by 

empirical testing. 

Integration testing for IIoT functionality was conducted without expectation of 

real-time behavior of the IIoT components, since there are no critical deadlines and 

arbitrary retries are allowed (a natural consequence of the TCP/IP stack). Much of the 

IIoT infrastructure was outsourced to cloud backend providers. Thus, testing involved 

simple verification of CRUD operations via the Supabase API. First using a REST 

testing tool to directly test the PostgREST API, as well as end user testing of the mobile 

app client. 

 

5.1 Results 

The following tests were conducted without a GUI running, swap disabled, and 

wireless interfaces (Bluetooth and WiFi) soft blocked with rfkill. The Raspberry Pi 5 

used was the basic B variant with 2GB of RAM. The Pi was not connected to the 

internet during real-time-performance-related testing. Also note that several non-real-

time but critical processes are still run; namely, the OPC UA server and the 

Modbus/TCP polling process. The tx-usecs and rx-usecs parameters for the 

EtherCAT NIC were both set to 0 using ethtool to disable packet coalescing. In this 

analysis, ‘jitter’ refers to cycle activation jitter of the PLC, which is defined as the 

following: 

 

where  is the current cycle,  is the scheduled next cycle start time that was 

calculated in the immediate previous cycle, and  is the time instance calculated in 

the current cycle. The control loop thread is instructed to sleep until wakeup for the 

next cycle. Hence in using the definition above, jitter is always non-negative. 

  

5.1(1) 
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5.1.1 cyclictest Latency Results 

To establish baseline latency of the Pi 5, cyclictest was used, with additional 

stress loads run concurrently with stress-ng. This is conducted to survey the 

performance of the host hardware itself, generic with respect to the actual real-time 

application to be run. 

Run Maximum per-

thread latency (μs) 

Maximum per-thread 

latency average across all 

8 threads (μs) 

Average of average per-

thread latency (μs) 

1 148 101.75 15.75 

2 119  104.00  11.88 

3 128 107.88 12.38 

Table 5.1.1-1: Baseline Pi 5 latency results with stress load run concurrently. 

 

5.1.2 Worst-Case 48-Hour Soak Test 

Test results Release 

(1ms cycle) 

Maximum jitter (μs) 210 

Maximum sleep interval (μs) 121 

Table 5.1.2-1: Maximum jitter and maximum sleep interval in μs over 48 hours. 

A torture soak test was conducted over a span of 48 hours nonstop, with constant RAM 

utilization between 50-60%, and non-isolated CPU cores (CPU0-1) constantly utilized 

at 100%. The CPU temperature was verified to be below 60°C, far below the 85°C 

throttling threshold. stress-ng was used for the simulated CPU and RAM load, and was 

tweaked so that RAM utilization does not contend excessively and that the control 

loop remains operable. 

 

5.1.3 12-Hour Soak Test 

Maximum jitter (μs) 206 

Maximum sleep interval (μs) 220 

Table 5.1.3-1: Maximum jitter and maximum sleep interval in μs over 12 hours. 

(Release mode, 1ms cycle) 
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The 12-hour soak test recorded a similarly intolerable maximum jitter of 206μs. While 

this is intolerable for <10ms cycles (jitter must be <200μs), it is sufficient for slower 

cycles (>20ms) and is helpful in delineating where the real-time capability of the Pi 5 

starts to fail. Similarly, the RAM utilization remained below the upper bound of 80%, 

staying between 50-60%. 

 

5.1.4 Proxy Soak Test 

Short-term tests (10-20 minutes) recorded maximum jitters between 194-206μs. 

To simulate the 48-hour soak test maximum jitter, an additional 30% scaling was 

applied to the short-term test maximum jitter. This 30% rule-of-thumb scaling was 

derived from the ratio between the rounded highest and lowest recorded maximum 

jitters. 

Table 5.1.4-1: Proxy soak tests with stress-ng RAM and CPU stress test running 

(Debug build mode, 10ms scan cycle). 

Table 5.1.4-2: Proxy soak tests with stress-ng RAM and CPU stress test running 

(Release build mode, 500μs scan cycle). 

The jitter upper limit is determined by the selected cycle period. The jitter must not 

exceed 2% of the cycle period. For a 10ms cycle, the maximum jitter must therefore 

be lower than 200μs, and for a 5ms cycle, the maximum jitter must be lower than 

100μs. 

 

 

 

Avg. RAM usage (%) 

Test results 

37 27 25 22 21 

Scaled maximum jitter (μs) 188.5 160.0 160.0 100.1 154.7 

Maximum sleep interval (μs) 7374 7558 7718 8241 7663 

Avg. RAM usage (%) 

Test results 

34 27 24 20 20 

Scaled maximum jitter (μs) 83.2 74.1 74.1 85.8 81.9 

Maximum sleep interval (μs) 133 147 147 239 126 
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5.1.5 Light Load Tests 

 Lighter load tests were conducted to see how light the system resource 

utilization has to be for the Pi to achieve better maximum jitter to support quicker scan 

cycles. This involved significantly reducing the amount of memory allocated to 

stress-ng memory stressor workers. 

Avg. RAM usage (%) 21 

Scaled maximum jitter (μs) 27.3 

Maximum sleep interval (μs) 8537 

Table 5.1.5-1: Light load test results (Debug build mode, 10ms scan cycle). 

Avg. RAM usage (%) 18 

Scaled maximum jitter (μs) 16.9 

Maximum sleep interval (μs) 393 

Table 5.1.5-2: Light load test results (Release build mode, 500μs scan cycle). 

stress-ng was used to stress the memory using 64 concurrent workers, with 1MiB 

allocated to each. From this result, the achieved maximum jitter stayed bounded below 

20-30μs. This is sufficient to support a 1ms scan cycle at the quickest (for a tolerance 

of <2% of cycle time maximum jitter). Depending on the exact application, the Pi is 

capable of fast motion control and multitasking, but is bottlenecked by the memory 

bus bandwidth. 

From the results, the real-time performance of the Pi is not necessarily affected 

by the total percentage of RAM used, but rather the bandwidth utilization. The Pi is 

still capable of supporting scan cycles <10ms despite a large number of concurrent 

processes accessing RAM, but only such that each process does so in small enough 

chunks at one time. 
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5.1.6 Floating above Idle Test 

 This test is run without stress-ng or any other stressors in the background, other 

than the components needed for operation. Real-time performance should always be 

tested with additional stress conditions. However, the results of this test show the 

asymptote of real-time performance as the system load tends towards idle (best 

performance under perfectly ideal low system load). 

Avg. RAM usage (%) 17 

Scaled maximum jitter (μs) 19.5 

Maximum sleep interval (μs) 8868 

Table 5.1.6-1: Floating above idle test results 

(20-minute run, Debug build mode, 10ms scan cycle). 

Avg. RAM usage (%) 14 

Scaled maximum jitter (μs) 14.3 

Maximum sleep interval (μs) 405 

Table 5.1.6-2: Floating above idle test results 

(20-minute run, Release build mode, 500μs scan cycle). 

5.1.7 12-Hour Test: Floating above Idle 

Avg. RAM usage (%) 15 

Maximum jitter (μs) 22 

Maximum sleep interval (μs) 289 

Table 5.1.7-1: Floating above idle test results 

(12-hour run, Release build mode, 500μs scan cycle). 

Without any stress load, the maximum jitter recorded over a 12-hour test run is 22μs. 

Comparing the 12-hour and the 20-minute run for the Release build, the 30% scaled 

maximum jitter is still significantly lower than the actual maximum jitter recorded. 

Hence, the 30% rule of thumb clearly does not work in this condition. Whilst the 

recorded maximum jitter is still lower than the 25μs upper bound (to satisfy <5% jitter 

for a 500μs cycle), it is not significantly lower with just a 3μs difference. 
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5.1.8 Testing of Heuristic: 12-Hour Light Soak Test 

The additional 30% scaling heuristic was tested by conducting a 12-hour light 

soak test, using the same lighter stress load (upper bound of 25% RAM utilization). 

Avg. RAM usage (%) 22 

Actual maximum jitter (μs) 78 

Maximum sleep interval (μs) 78 

Table 5.1.8-1: 12-hour light soak test results (Release build mode, 500μs scan cycle). 

Given that in Table 5.1.4-2, the scaled maximum jitter was 74.1μs for the 24-27% 

RAM usage regime, it is not far off from the actual 78μs maximum jitter measured 

from the 12-hour run. 

 

5.1.9 Jitter Distribution 

 The following plots were obtained from short 20-minute test runs. Although 

real-time characteristics are quantified in terms of maximum jitter and latency 

recorded during worst-case scenarios, it is still useful to study the distribution of cycle 

jitter albeit from short test runs. In the following figures, the dashed orange lines 

indicate the boundary of +/–1σ (one standard deviation) away from the average. 

 

Figure 5.1.9-1: Jitter Distribution under Stress Load. 
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Figure 5.1.9-2: Jitter Distribution when Floating above Idle. 

In both Figure 5.1.9-1 and Figure 5.1.9-2, there is a long tail to the right that drops 

sharply from the average. In Figure 5.1.9-1, the distribution follows a more Bell-curve 

like shape, in contrast with Figure 5.1.9-2 that has more of an exponentially decreasing 

curve. Although the long right tail in Figure 5.1.9-1 also appears like an exponentially 

decreasing curve, more intermediate points exist between the average and the 

maximum values, whereas in Figure 5.1.9-2, the frequency drop is much more abrupt. 

 

5.1.10 Real-Time Performance Test Caveats 

 There are some notable caveats with regards to the real-time performance of 

the Pi. Primarily, real-time performance may vary widely with respect to the software 

architecture. In this project, only one EtherCAT MainDevice is tested, which runs in 

user mode. Better real-time performance may be attainable using a kernel-mode 

EtherCAT MainDevice, such as the IgH Etherlab Master developed and maintained 

by Florian Pose (Ingenieurgemeinschaft, 2025). Despite these caveats, the test results 

indicate that the Pi is able to guarantee cycle times of at least 5ms with less than 2% 

maximum jitter for the majority of applications with sufficiently light system load. 
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5.1.11 IIoT Integration Test 

Tested Aspect Qualitative Result 

Supabase API Gateway Codes All returned status code 200 (Success) 

PLC Real-Time Performance 

Impact 

None. Cycle time fully respected and jitter stays 

under 2% cycle time threshold (10ms cycle). 

Maximum jitter recorded was 35μs. 

Mobile Client Occasional UI rendering issues; Assets sometimes 

load slowly and animations get skipped. 

HMI UI elements respond slowly, but are sent to the 

PLC relatively quickly. 

Table 5.1.11-2: Qualitative Integration Test Results. 

Most issues uncovered during IIoT integration testing are frontend-related. Often 

having to do with the UI, this is not critical as the transmission of data on the backend 

of each node remains to be adequately reliable. One caveat of the integration test is 

that none of the nodes are subjected to soak tests, each node was subjected to normal 

loads, hence are not floating above idle, either. 

Integration test durations are also short, as the internet connection is provided 

by the SM-A528B/DS hotspot. Using the building network to connect to the internet 

is a security risk, hence the duration of an integration test run never exceeded the 

duration of a work day. 
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5.2 Discussion 

If the Pi is used for deployment, it should be run in console mode only to reduce 

the overhead introduced by a graphical desktop environment. VNC, RDP, or any other 

remote GUI interfacing should be avoided, and disabled when the PLC is running its 

control loop(s). Any serious deployment of the Pi must also exclusively use a dedicated 

SSD for maximum reliability. A microSD card is simply not a reliable storage medium, 

especially for host hardware running real-time control software. Internet connection 

should best be limited to a dedicated non-real-time Ethernet NIC. 

From experimentation, without the use of memory lock syscalls, GUI 

applications almost always cause some missed cycles. This might be due to disk I/O 

DMA, that cannot be preempted even by real-time tasks on SCHED_FIFO. Calling 

mlockall() at the start of the real-time program seem to have made the real-time tasks 

resilient, even while the memory and disk I/O are stressed. As described in Madden 

(2019), the usage of memory locking in real-time contexts such as this is typical. 

Nevertheless, it is best for any graphical HMIs to be hosted on a separate device. The 

Pi is best suited for process data acquisition, light processing, and retransmission; to 

be done without the overhead of a graphical desktop environment. 

 With the knowledge that web browsers such as Chromium and Firefox require 

large memory and disk bandwidths, concurrent memory and disk stress tests were 

conducted using stress-ng, which reproduced the missed cycle deadlines and 

EtherCAT timeouts. Since this ultimately depends on hardware implementation of 

memory and disk I/O management of the host hardware, a different architecture 

(different SoC or a typical x86 motherboard configuration) may offer better real-time 

task resilience. However, mlockall() does provide a safeguard against page faults by 

guaranteeing that mapped pages of the calling process will stay in physical memory 

and are not evicted until munlockall() is called or the process terminates. 

It is however, important to note that exact control operations of hardware 

resources cannot be preempted by user-space processes, despite being scheduled using 

SCHED_FIFO at high priorities. Unbounded latencies may still occur due to hardware 

controller operations, which are outside the control of even the kernel. 
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 Other possibly confounding factors namely inter-process communications 

were eliminated, both theoretically and experimentally. iceoryx2 is a lock-free wrapper 

of shared memory for inter-process communications. As such, it could not have 

blocked on any RwLocks or Mutexes (as none exist in the API internal data path) and 

would have simply returned errors if samples are not successfully sent or received. 

This was also tested experimentally; with or without inter-process communication 

operations, the presence of missed deadlines only respond to significant concurrent 

memory and disk loads, which can be triggered by normal web browsing and 

stress-ng. 

 

5.2.1 Sub-Millisecond Real-Time Performance 

At least in Release build mode, the Pi is able to support sub-millisecond scan 

cycles, however, from testing, it is unable to support maximum cycle jitter of <3% of 

the cycle time for a 500μs cycle, if the specific PLC runtime architecture in this report 

is used without additional load (floating above idle). With a sufficiently light system 

load, it can achieve a maximum jitter of <5% of a 500μs cycle, amounting to a bound 

on the maximum jitter of 25μs. Since this level of performance is only observed with 

light stress tests, the ability to support sub-millisecond cycles on the Pi is only a limited 

guarantee and heavily depends on the exact application. 

 

  



43 

5.2.2 Comparison with Equivalent Benchmarks 

Qiu, Varis, and McArthur (2024) tested a CODESYS system deployed on 

several Texas Instruments ARM SoCs. One SoC tested was the AM62x, a quad-core 

SoC with 512KB of shared L2 cache clocked at 1.4GHz maximum. The AM62x is the 

most equivalent SoC to the quad-core BCM2712 of the Raspberry Pi 5, though the 

BCM2712 does have a higher clock frequency at 2.4GHz. 

The rest of the SoCs tested by Qiu et al. had specifications that were too 

disparate from the BCM2712 that would make it an unfair comparison either way. 

Namely, the AM69 is an octa-core SoC clocked at 2GHz with 1MB of shared L2 cache, 

while the AM64x is a dual-core SoC clocked at 800-1000MHz, with 256KB of shared 

L2 cache. It is important to note that the results from Qiu et al. did not involve a stress 

load running concurrently. Hence, an ideally light load. 

SoC Maximum jitter 

recorded (μs) 

Maximum cycle time 

(μs) 

Minimum time spent 

not working (μs) 

AM62x 116 700 300 

AM69 53 384 616 

TDA4VM 65 371 629 

AM64x 973 1906 0 

Table 5.2.2-1: Adapted results from Qiu et al. (2024). The column “Minimum time 

spent not working” is derived by subtracting the 1ms cycle time used by Qiu et al. 

from the maximum recorded cycle time. 

For the particularly underpowered AM64x, it failed to respect the 1ms cycle at least 

once. The Raspberry Pi 5B recorded a maximum jitter of 210μs in the worst-case stress 

test, and 22μs when floating above idle. The AM62x recorded 116μs without a 

concurrent stress load. 
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5.2.3 Functional Safety 

Soft PLCs are incredibly powerful and flexible, but being used for real-time 

controls, there are a lot more critical factors that need to be taken into consideration to 

ensure reliable and safe operation. Being soft real-time systems, (non-safety) PLCs 

cannot be solely relied upon for safety. Although PREEMPT_RT promises bounded 

latencies, it does not provide any theoretical and formally quantifiable bounds. It is 

practically impossible to statically analyze a GPOS such as in the case of a Linux 

PREEMPT_RT-enabled distro the same way more typical RTOSs (or bare-metal/OS-

less control subsystems) are analyzed (Reghenzani, Massari, & Fornaciari, 2019). 

Ultimately, hard real-time systems (e.g. aerospace, automobile passive 

restraints, nuclear fission reactors, etc.) are application-specific, and require 

bespokely-architected solutions. When used as part of a larger application system (e.g. 

assembly line, continuous/batch chemical processes, etc.), soft real-time subsystems 

by themselves are not sufficient. The vast majority of non-safety PLCs on the market 

fall within the category of soft real-time, as even ‘hard’ microcontroller-based non-

safety PLCs are designed to operate in general situations, and not with any specific 

production floor layouts and contextual factors in mind. 

However, the degree to which an entire application system is functionally safe 

cannot be quantified by the real-time firmness of the PLC alone. In practice, functional 

safety must be realized with hard real-time safety subsystems (e.g. e-stops, light 

curtains, safety relays, FSoE, PROFISAFE, etc.). Any application system cannot 

solely rely on any single specific subsystem to implement functional safety, at least up 

to the required SIL in accordance with relevant standards. 
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5.2.4 The Pi vs. Other Host Hardware 

 Compared to less-capable though cheaper SBCs, the quad-core ARM SoC of 

the Pi can be used for redundant processing or independent concurrent control of 

multiple processes, with lower power consumption and better thermals. The Pi is more 

capable of running the plethora of computer vision libraries and APIs, and is more 

capable of edge inference of vision or machine learning models. This makes it a 

compelling alternative against vendor-locked peripherals and software stack (an 

example being vision solutions from KEYENCE). 

 However, the ability to run such additional software is not unique to the Pi, as 

they can be deployed on any host hardware running a GPOS. When contrasted with 

more expensive industrial PC offerings (such as ones from ASRock, Advantech, etc.), 

in the vast majority of situations, the latter is orders of magnitude more reliable; being 

purpose-built for use in industrial environments. The Pi has scant advantages 

compared to IPCs, notwithstanding its lower upfront cost. 

 

5.2.5 Improving Operational Security 

 IR 4.0 principles inherently require a network of control devices. Such network 

of control devices serve as a wide attack surface (Honeywell International, 2021). This 

is unavoidable, but it does not mean that it cannot be mitigated with best operational 

security practices. Currently, by virtue of being an experimental system, the PLC 

runtime makes calls to the remote database via HTTPS with encrypted payloads. 

Nonetheless, this is not enough, a VPN tunnel should be used and is in fact already 

standard practice in the industry. Zero trust should also be assumed; processes should 

be executed with the least amount of privilege possible for operation. 

 The subsystem binaries are also run as root. This can be avoided by setting the 

minimum required capabilities for non-root user(s) to run the binaries. Supervisory 

tools such as Monit can be used to periodically check for suspicious processes and 

system resource utilization. In particular, Monit can be used to send alerts and be set 

up to judiciously execute specific actions, such as sending SIGTERM/SIGKILL to 

misbehaving non-critical processes. 
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5.2.6 Extending Support for IEC 61131-3 

 IEC 61131-3 describes the industry standard for programming languages used 

to program PLCs, among which, Structured Text and Ladder Diagram being the most 

popular. Unfortunately, feature-complete open source standalone compilers for IEC 

61131-3 are few and far between. This is in stark contrast with general purpose 

programming languages such as C, which has numerous standards-compliant 

compilers. Part of this discrepancy is due to the tight coupling between the compiler 

and the runtime in typical proprietary IEC 61131-3 implementations, and the relative 

simplicity of C itself. 

Despite this, compilers such as MATIEC and RuSTy exist, though the former 

is not active, while the latter is still under heavy development. Both of these compilers 

are also vastly different in implementation. MATIEC is written in C++ and works by 

converting IEC 61131-3 source code into ANSI C, whereas RuSTy is written in Rust 

and utilizes LLVM as the backend, hence generating LLVM IR from Structured Text 

source code. It is important to note that these are standalone compilers, and a dedicated 

runtime must be built upon the API provided by these compilers, should any future 

work be done to support IEC 61131-3. Basic features such as online changes or hot 

reloading/swapping are then up to the runtime implementation. This will involve 

additional subsystems such as a debugger for online variable read/writes. 

 

5.2.7 Lock-Free Design 

The control logic should ideally not hold locks to the data structure also 

accessed by the EtherCAT MainDevice. Currently, this is not much of an issue, as the 

lock accesses are carefully laid out and control logic evaluation is synchronous, hence 

blocking. However, this is not a resilient or expandable design, and is prone to 

deadlocking. Additionally, it prevents separation of cyclic tasks. A single EtherCAT 

MainDevice cyclic task should be able to handle process data for multiple (a)cyclic 

tasks that may run on different cycle times. This is the implementation used by 

CODESYS and some of its derivates; for example, PLCNext (CODESYS Group, n.d.-

a; WAGO GmbH, 2022). Holding locks to shared data structures makes this common 

setup impossible to implement without additional overhead for complex task 

scheduling. Despite that, if more than one task has write access, a Mutex is the simplest 

solution, as implemented by TwinCAT 3 (Beckhoff Automation, n.d.-c). 
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5.2.8 Relevance to Open Process Automation (OPA) 

A software-defined approach for PLCs is a critical part of implementing an 

open and interoperable system. An open-source soft PLC runtime and development 

environment builds upon the already-pervasive CODESYS platform used by different 

vendors. Despite that, CODESYS remains to be a closed-source, proprietary platform. 

Its closed-source nature remains to be an obstacle against completely liberating 

industrial automation from vendor locking. For example, Beckhoff had announced 

TwinCAT PLC++, a complete rewrite of their CODESYS-based soft PLC runtime and 

development environment (Beckhoff Automation, n.d.-d). 

While it appears to be a promisingly great product, Beckhoff has no plans to 

make it completely vendor-agnostic, and such exclusivism is inherently against the 

openness ethos. It is then imperative that an open-source, community-led soft PLC 

runtime and development environment is worked on, and this particular project 

discussed in this report is a glimpse of such vision. 

A relevant industrial standard to gauge openness and interoperability is the 

O-PAS standard, published and maintained by The Open Group, a coalition of over 

100 industry members (The Open Group, n.d.). Such open-source, Linux-based PLC 

platform would satisfy Application Layer L as defined in Part 1 of the O-PAS Standard 

(The Open Group, 2023). Any sort of vendor-locking will tie the entire layer to specific 

hardware, or at least limit interoperability at Layers L and above. An open and modular 

software architecture akin to the one implemented in this project also readily lends 

itself to operating as a DCN, as is already being used at ExxonMobil’s Resin Finishing 

Plant in Baton Rouge, Louisiana (Kasprzak, 2025). 
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5.3 Sustainability 

The project finds relevance in four of the 17 United Nations Sustainable 

Development Goals (UNSDG), spanning across three pillars of sustainability, namely; 

Environmental, Social, and Economic. 

5.3.1 Environmental 

Target Project relevance 

7.b Expand infrastructure and upgrade 

technology for supplying modern 

and sustainable energy services 

Modular and flexible software-

defined architecture adapts to 

existing instrumentation, facilitating 

infrastructure control system 

expansion and upgrade 

Table 5.3.1-1: Project Environmental UNSDG (Goal 7). 

Adapted from United Nations (2015). 

Target Project relevance 

11.2 Provide access to safe, affordable, 

accessible, and sustainable 

transport systems by expanding 

public transport 

Project is sufficiently robust to 

support non-critical control systems 

for public transport infrastructure 

such as access control, ticketing, 

station platform HMIs, surveillance 

and assistance request systems 

Table 5.3.1-2: Project Environmental UNSDG (Goal 11). 

Adapted from United Nations (2015). 

The project supports Target 7.b in expanding infrastructure and upgrading technology 

in the service of sustainable energy services. The modular and flexible software-

defined architecture seamlessly integrates with existing instrumentation, directly 

facilitating the expansion and upgrade of the control systems that power infrastructure. 

In addition, the project supports Target 11.2 in a similar manner. Public 

transportation infrastructure also requires non-critical control systems that can be 

controlled with sufficient robustness using the system implemented in this project. 

Non-critical control systems do not require airtight functional safety guarantees. The 

system implemented may be applied in HMIs that simply visualize and show time of 
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arrival, station information, etc., whose downtime will not result in catastrophic failure. 

Hence, such applications do not require functional safety and can benefit from the open 

architecture of the system. 

 

5.3.2 Economic 

Target Project relevance 

9.3 Increase access of small-scale 

industrial and other enterprises to 

integration into value chains and 

markets 

Offers lower cost alternative for 

automating facilities and machinery, 

without sacrificing state of the art 

IR 4.0 capabilities 

9.4 Upgrade infrastructure and retrofit 

industries to make them 

sustainable 

Hardware-agnostic, open source 

architecture maximize compatibility 

with wide variety of already-existing 

equipment 

9.b Support domestic technology 

development, research and 

innovation in developing countries 

This project lays the groundwork for 

a Malaysian product to make a break 

in the automation industry 

Table 5.3.2-1: Project Economic UNSDG. Adapted from United Nations (2015). 

With regards to the Economic pillar of Sustainability, the project aids in advancing 

inclusive industrialization and innovation, as per UNSDG 9. More specifically, per 

Target 9.3, the project enables small-scale enterprises to embrace and adopt 

automation and not be left behind in IR 4.0. The hardware-agnostic and open-source 

architecture maximizes compatibility with existing equipment, thus helping to achieve 

Target 9.4 which aims to upgrade infrastructure and retrofit industries to make them 

sustainable. 

 The project comprehensively leverages cost-effective, software-defined 

solutions that can be supported even on commodity hardware, thus lowering the barrier 

to entry and leveling up the playing field for small- and medium-scale enterprises. 

Furthermore, the solution that the project offers can extend the operational lifespan of 

legacy systems that are still capable of operation. This ultimately increases resource 

efficiency and reduces waste. 
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5.3.3 Social 

Target Project relevance 

17.6 Enhance cooperation on and 

access to science, technology, and 

innovation and enhance 

knowledge sharing 

Project abides by GNU General 

Public License; Learnings from the 

project have been shared publicly to 

the global open source community 

17.16 Enhance the Global Partnership 

for Sustainable Development; 

Mobilize and share knowledge, 

expertise, technology 

Project relied on FOSS 

dependencies; Contributors to open-

source dependencies are from all 

around the globe 

Table 5.3.3-1: Project Social UNSDG. Adapted from United Nations (2015). 

The project also finds significant relevance in the Social pillar of Sustainability. In 

particular, the project fosters scientific and technological cooperation and knowledge 

sharing, thus helping to reach Target 17.6. The dependencies used in the 

implementation of the project are all open-source, whose contributors coming from 

various backgrounds and nationalities. The project aids to enhance the global 

partnership for sustainable development by mobilizing and sharing knowledge, 

expertise, and technology. The project was not developed in a vacuum, and numerous 

knowledge exchange within the open source community was involved in its 

development. 

 This project is deeply rooted in the FOSS ecosystem, and does not live in a silo. 

Rather, its source code, documentation, and implementation insights are openly 

accessible thus lending itself to community collaboration. The indirect effect of being 

an open source project is the low direct cost of auditing, as the source is publicly 

accessible and contributors have a vested interest in the quality of dependencies in the 

FOSS ecosystem. The Social aspect is especially significant due to the self-reinforcing 

cycle of quality and accountability, as the development does not occur behind opaque 

walls.  
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6.0 Conclusion 

 In conclusion, the project has successfully met the objectives set out. The 

feasibility of a fully open-source based commercial-grade automation system is 

possible within the realm of building automation. A functional prototype of a BAS was 

created using a fully FOSS stack, hence demonstrating the feasibility of applying open 

source tools. HMI/SCADA functionality and IIoT integration was demonstrated across 

multiple platforms including desktop and mobile. Deployment reliability was 

quantified by measuring jitter, latency, uptime, system resource utilization, and CPU 

temperature range. The extent of possible future expansion into more critical 

applications was also evaluated, taking into consideration possible expansion into 

process automation and involvement of motion controls and functional safety. 
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Appendix A 

Links to Project GitHub Repositories 

The following are repositories hosted on GitHub of the software components created 

to implement the project. 

Main soft PLC implementation: www.github.com/andergisomon/Gipop/ 

IIoT Supabase-OPC UA Gateway: www.github.com/andergisomon/sunsuyon 

Mobile app client: www.github.com/andergisomon/mantadsodu 

 

  

http://www.github.com/andergisomon/Gipop/
http://www.github.com/andergisomon/sunsuyon
http://www.github.com/andergisomon/mantadsodu
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Appendix B 

Screenshots of Parts of the System 

 

 

 

 

 

 

 

 

 

 

Figure B1: Supabase Console. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B2: PLC EtherCAT and control loop process. 
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Figure B3: Remote command Supabase-OPC UA gateway process. 

 

 

 

Figure B4: Modbus/TCP polling process. 
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Figure B5: Telegram bot process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B6: OPC UA server process. 
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Figure B7: Mobile client app 

Home screen. 

Figure B8: Mobile client app  

Tag View screen. 
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Figure B9: Mobile client app 

Chart View screen. 

Figure B10: Mobile client app 

Admiral disclaimer screen. 
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Figure B11: Mobile client app 

Admiral screen. 

Figure B12: Telegram bot notification 

and chat screen on mobile. 
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Figure B13: FUXA HMI Dashboard. 

 

 

Figure B14: FUXA UI element demo. 

 

  



65 

Appendix C 

Pictures of the Physical Test Bench 

 

Figure C1: Test bench. 

 

Figure C2: Development laptop acting as HMI, hosting FUXA, 

showing ‘Home’ screen. 
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Figure C3: Development laptop acting as HMI, hosting FUXA, 

showing ‘Dashboard’ screen.  
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Appendix D 

Linux Kernel Build and Boot Configuration 

Link to kernel .config: https://gist.github.com/andergisomon/ 

f3cd74ec9829d45029abc3a906f1b6d8#file-

config 

Link to kernel boot parameters: https://gist.github.com/andergisomon/ 

f3cd74ec9829d45029abc3a906f1b6d8#file-

kernel-boot-arguments 

 

  

https://gist.github.com/andergisomon/f3cd74ec9829d45029abc3a906f1b6d8#file-config
https://gist.github.com/andergisomon/f3cd74ec9829d45029abc3a906f1b6d8#file-config
https://gist.github.com/andergisomon/f3cd74ec9829d45029abc3a906f1b6d8#file-config
https://gist.github.com/andergisomon/f3cd74ec9829d45029abc3a906f1b6d8#file-kernel-boot-arguments
https://gist.github.com/andergisomon/f3cd74ec9829d45029abc3a906f1b6d8#file-kernel-boot-arguments
https://gist.github.com/andergisomon/f3cd74ec9829d45029abc3a906f1b6d8#file-kernel-boot-arguments
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Appendix E 

Equipment Bill of Materials 

The following BOM lists the equipment used for the functional demonstration of the 

integrated system. Consumables such as ferrules, fuses, resistors, and stranded copper 

wires are not included. 

Item Description Manufacturer Part Number 

Network 

switch 

5-port 10/100Mbps Desktop Switch TP-Link LS1005 

Non-RT NIC USB to Gigabit Ethernet Adapter UGREEN CR111 

Power supply DIN rail power supplies for 1-phase 

system 24 V, 10 A 

PULS QS10.241 

EK1100 EtherCAT Coupler Beckhoff EK1100 

BK1120 EtherCAT Bus Coupler for standard Bus 

Terminals 

Beckhoff BK1120 

IRIV IO Modbus/TCP Remote I/O Extender Cytron IRIV-IOC 

EL1889 EtherCAT Terminal, 16-channel digital 

input, 24 V DC, 3 ms, ground switching 

Beckhoff EL1889 

EL2889 EtherCAT Terminal, 16-channel digital 

output, 24 V DC, 0.5 A, ground switching 

Beckhoff EL2889 

EL3024 EtherCAT Terminal, 4-channel analog 

input, current, 4…20 mA, 12 bit, 

differential 

Beckhoff EL3024 

KL1889 Bus Terminal, 16-channel digital input, 

24 V DC, 3 ms, ground switching 

Beckhoff KL1889 

KL2889 Bus Terminal, 16-channel digital output, 

24 V DC, 0.5 A, ground switching 

Beckhoff KL2889 

KL6581 Bus Terminal, 1-channel communication 

interface, EnOcean®, master 

Beckhoff KL6581 

KL6583 EnOcean®, radio transceiver, for KL6581 Beckhoff KL6583 

PTM200 Push button Transmitter Device EnOcean PTM200 

PLC Raspberry Pi 5 2 GB BCM2712 2.4GHz 

Single Board Computer 

Raspberry Pi Pi 5 2GB 

Local HMI Development Laptop Acer Aspire 

A315-57G 

Remote HMI Smartphone Samsung SM-

A528B/DS 

Humidity 

Temperature 

Sensor 

Digital transmitter for humidity & 

temperature: Space version 

Rotronic HF135-

SB1XDXXX 

Tower Light AC/DC 24V, Ø45mm Pole Mount Type 

LED Steady Tower. Red, Amber, Green 

Qlight ST45B-3-24-

RAG 

Circuit 

breaker 

Miniature circuit breaker 230/400 V 6kA, 

1-pole, C, 6 A, D=70 mm 

Siemens 5SY6106-7 

 


